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Introduction

The univarite AR(p) process
y=ctdyi+...Fdpp—pte &~ I1D(0,0°)
explains the interaction of y; with its previous p lags.

Q: Might y; depend not only on its own lags but on the lags of
other variables?

Q: Should we model the co-movements of sereval variables?
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Introduction

Financial markets are dependant of each other and knowing
the financial market are interrelated is very important

Consumption and income
Stock prices and dividends
Forward and spot exchange rates

Interest rates, money growth, income, inflation
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Examples
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Examples

10

ibm

30

30
|

sp
0
|

—-30
1

0 200 400 600 800 %’

index

6 /58



Introduction

IBM

IBM Lag 1

VAR model MLE Bivariate Granger's Causality
Examples
S A 0 S A 0
- 0 -
o 0 O Jo
- | s - _ 0
o a o
- - -
| |
o o
M - M -
! T ! T
=30 -10 0 10 20 30 =30 -10 0 10 20 30
S&P 500 S&P 500 Lag 1
o
™ . 0
- o |
o | % o «
o 8 —
- o o O - a
o 0 o3 _
T o ]
T o
o M -
M - |
I LI I
=30 -10 0 10 20 30 =30 -10 0 10 20 30

S&P 500

S&P 500 Lag 1

Impluse Responses

f



Introduction VAR model MLE Bivariate Granger's Causality Impluse Responses

Examples

@ There is correlation (linear dependency) between the two
series at time ¢ (concurrent correlation)

@ The cross correlation at lag 1 is weak

o Can we obtain the sample cross correlation matrix (CCM)?
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pth order Vector Autoregression: VAR(p)

Consider n time series variables yy = (y1¢, .- -, Ynt)'-

For example n = 2 where y¢ = (y1¢, y2¢)’ where y1; might be the
log of the GNP in year ¢ and yo; is the interest rate paid on
Treasury bills in year ¢.

The VAR(p) model:

ye=C+Piyt 1+...+Ppyt p+ €&

Note: The bold notation means that the object is a vector or a
matrix.
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VAR(p)

Introduction VAR model MLE
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VAR(p)

So, the first equation is:

Y1t =c1 + G11Y1e-1 + Play2i—1+ -+ Plp¥n,i-1
+ @2yt + Dot a2t .+ B Yn 2

+ €1¢

Q1: Is there simultaneity?

Q2: How is the second equation?

11/58
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We can use the operator notation with matrices:

[ — &1L — ®2L% — ... — &, LPly; = c + ¢

or

®(L)yt =c+ €

where ®(L) is the n x n matrix polynomial in the lag operator:

12 /58
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Covariance-stationarity of VAR(p)

Q: Do you remember when an AR(p) process was weakly
stationary?

13 /58
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Covariance-stationarity of VAR(p)

Q: Do you remember when an AR(p) process was weakly
stationary?

Al: First and second moments are all independent of ¢
A2: The polynomial 1 — ¢(z) have roots outside the inner circle.

A3: Eigenvalues from det(IA — F) = 0 are inside the inner circle.

14 /58
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Covariance-stationarity of VAR(p)

Q: Do you remember when an AR(p) process was weakly
stationary?

Al: First and second moments are all independent of ¢
A2: The polynomial 1 — ¢(z) have roots outside the inner circle.
A3: Eigenvalues from det(IA — F) = 0 are inside the inner circle.

The same applies to the VAR(p):
Qu=c+@p+Ppu+...+®,n
©Q The second moment:

Ty =E((y: —m)(yi—j —m)) PR

15/58
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Second moment of VAR(p)

Var(yit) Cov(yit, y2t) .. Cov(yit, Ynt)
Var(y.) = To = [v] = : : - :
Cov(Ynt, y1¢)  Cov(ynt, y2i) - -- Var (ynt) /

The correlation matrix of y;

Corr(y;) =Rog =D 1IyD™!

where D is a n x n diagonal matrix with /7% as elements.
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VAR(p) moments estimated from the data

Ergodicity:

Covariance stationary = ergodic in the mean
1

T
YZT;Yt =P E(y:) = p

Stationary Gaussian proccess = ergodic in the second moment

T
. 1
Lo =7 Y (ye =Yy —¥) P Var(y,) =Ty

t=1 .
Ro =D 'I'(D ! -7 Corr(y:) = Ry
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Cross covariance and correlation matrices

@ Yit, Yot, - - - » Ynt, €ach have each own autocovariances and
autocorrelation matrices.

@ There is also a cross lead-lag covariances and correlations
between all possible pairs of components.

Tp =[] = E((y: — 1) (ye—r — 1))
Ry =[p};] =D 'T\D*
%kj _ Cov(yit, Yj,t—)

B
Py ===~ . .
fy?z'yj% Std(ylt)Std(th)
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Cross covariance and correlation matrices

(4]

When £ > 0, this correlation measures the linear dependency
of yir on y; 14

o If pfj # 0 and £ > 0 we say that the series y;; leads the series
yie at lag k

° pﬁ» is the lag-k autocorrelation coefficient of y;;

° pfj £ p;?l- for @ # j. The two correlations measure two different
linear dependencies.

@ So I'; and Ry, are generally non-symmetric

@ However pfj = pj;k

What does it mean pfj = pj_i]C but pfj #* PZ for i # 57

19/58
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State Space form of VAR(p)

It can be written as a VAR(1): &, = F&,_; + vi

yt —p
Yi-1— 1
Et: 5
Yt—p+1 — MK
P P ... ¢, P
I, 0 ... 0 0
F= . .
0 0 I, 0
€t
0
Vi = : %’
0
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Covariance-stationarity of VAR(p)

£t+s =virs +Fvips1 + F2Vt+372 + ...+ Fs_lthrl + Fsgt

The VAR is weakly stationary if:

@ The eigenvalues of F all lie inside the unit circle:
det(T,\! — & \P~1 — .. —&,)=0

or
@ The roots of

I, —®1z—...—®,2")=0
lie outside the unit circle. %’
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Example: VAR(1), n =2

For example assume that 7;; correspond to the IBM log returns
and o correspond to the S&P 500 log returns.

Y1t =c10 + G11Y1,e—1 + P12Y2,t—1 + €14
Yot =C20 + P21Y1,1—1 + P22Y2 11 + €24

(a)~((0)==(o 22))
€2¢ 0 021 0922

Because Q is positive definite, it can be decomposed 2 = LGL/
where L is lower triangular with unit diagonal elements and G is a

diagonal matrix.
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Example: VAR(1), n =2

¢12 denotes the linear dependence of y1; on 42 ;1 in the
presence of y; 11

¢12 is the conditional effect of y2;—1 on y1; given Yy 11
Q: What does it mean ¢12 = 0?7 and ¢91 = 07
If 12 = po1 = 0 then yy; and yo; are uncoupled

If 12 # 0 and ¢21 # 0 then there is a feedback relationship
between the two series

012 = o091 and measures the concurrent correlation between
y1¢ and g2y (Io)

If 012 = 0 then there is no current linear relationship between
the two component series

f
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Example: VAR(1), n =2

Structural equation: the two equation system is converted into one
equation:
The reduced form:

yi=c+ Py 1+ €
The structural form:

Ly, =L lc+ L 1®y, 1 +L ¢
=c* + ®Tys1+m

24 /58
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Example: VAR(1), n =2

For example:

Y1t _ 0.2 0.2 0.3 Y1,t—1 €1t _ 2 1
( Yo > = ( 0.4 >+< 06 1.1 > < Ya 11 )+( - > b= ( 11 >
—_——
/1 0\ .. [ 1 0
L_(0.5 1>L _<—0.5 1)
g_( 1 0 2 0 1 0y
—\ -05 1 0 05 05 1

In fact,

25 /58
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Example: VAR(1), n =2

Multiplying the equation by L~! we get the structural VAR which
shows explicitly the concurrent linear dependence of yo; on yi¢

Y1t _ 0.2 0 0.2 0.3 Y1,t—1 U1¢
( o ) _< 0.3 ) v ( 0,531 >+< —0.7 0.95 ) ( Ya 11 )*( s )
2 0
L _< 0 05 )

Orthogonal error.
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Structural VAR (SVAR)

matrix(c(2,1,1,1), nrow=2, byrow=T)->Omega

>
> library(bdsmatrix)
> L=gchol (Omega)
> G= diag(c(diag(L)))
> L=as.matrix (L)
> L
[,1]1 [,2]
[1,] 0
[2’] 1
> G
[,1]1 [,2]

Impluse Responses
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Structural VAR (SVAR)

> c=c¢c(0.2, 0.4)
> Phi=matrix(c(0.2, 0.3, -0.6, 1.1), nrow=2, byrow=T)
> c.star= solve(L)}*Jc
> Phi.star= solve(L)}*/,Phi
> c.star
[,1]
[1,] 0.2
[2,] 0.3
> Phi.star
[,1]1 [,2]
[1,] 0.2 0.30
[2,] -0.7 0.95 .

28 /58
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Structural VAR (SVAR)

> Sigma.u = solve(L)}*/0megal*/solve (t (L))
> Sigma.u

[,1]1 [,2]
[1,] 2 0.0
[2,] 0 0.5

29 /58
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Example: VAR(1), n =2
Stationarity:

det(\Iy — ®) = det < A—02 —03 ) =0

06 AN—1.1
A —130+04=0

A1 =08 X=05

Q: Is it stationary?

30/58
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Exercise (5minutes)

Find roots z:

det(Io — ®2) =0

Q: Is it stationary?

31/58
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Important issues of a stationary VAR

If the process is stationary, then the €;; are uncorrelated with
Yit—1,---3Yit—p

Endogeneity is avoided by using lagged values of

Yits Y2ty - -5 Ynt

The VAR(p) model is just a semingly unrelated regression
(SUR) model with lagged variables and deterministic terms as
common regressors

Then, parameters of a vector autoregression can be estimated
consistently with n OLS regresssions, one for each equation.

Q: What estimator you think will be more efficient?

32/58



Introduction VAR model MLE Bivariate Granger's Causality Impluse Responses

Conditional maximum likelihood for a VAR

@ Let y; denote a m x 1 vector containing the n variables at
time ¢.

Yt =C+ P1¥t-1+ ...+ Ppyt—p + € € ~ I[IDN(0,9)

@ Suppose we have observed each of these n variables for T + p
time periods

o The initial values are y_p11,y—p+2,---,Yo0 and to base the
estimation on the last T' observations y1,y1,-..,yT

@ Want to find the conditional likelihood function

fYT,...Yl‘Yo,...Y_p+1 (yT7 oo 7y1’y07 Y-1,---,Y-p+1; 0)

f
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Conditional maximum likelihood for a VAR

@ Then, we maximise the conditional likelihood function with
respect to 6 which contains ¢, ®1,...,®, and Q.

o Because ¢; ~ IIDN (0, 2) then

Ve|yo,¥-1,- s Y-pt1 ~ N(c+ P1yi1+ ... + dpyi—p, Q)

o If we define x¢ = (1,y¢-1,...,yt—p) and
IT' = (¢, ®1,...,®P,) then, the conditional distribution can be
written as

Ytb’O»ZY—lv o aY—p—i-l ~ N(H/Xt7n)

Q: We know the conditional density of a normal, don’t we?

f
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Conditional maximum likelihood for a VAR

@ The conditional likelihood function of our sample is:

N Y1 Yor Yopir YT5 -5 Y1Y0, Y1, -, Y—p+1;0) =

77
I Aeves, Y pe Gelye-1,- -y -pr1;6)
t=1
o Taking logs:
37
L£(0) = Z 0g fy Yo 1, Y pia VElYE—1,- -, Y—pt1;0)
=1
—T T
S log(2m) + 5 log |27
L
3 Z [(y: — %) Q7 (yr — IT'xy)] Of

t=1
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MLE of II

Assuming normality of the innovations and uncorrelation, the MLE
of IT which contains ¢ and ®; is:

. - -

1Y / /

II" = g VX E X¢X¢
Lt=1 t=1

In particular the jth row, corresponding to the jth equation is:

- T _

~ /_ / /

i = Dy | | Do xex
Li=1 t=1

Q: Does this last equation reminds you of something?

1

1
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MLE of 2

Substituting IT into the conditional log likelihood function, we
obtain the following:

A —Tn

£(Q,T1) =

The estimator:

The ij-element of Q:

37/58
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VAR in R

Let us simulate ¢ = 250 observations of:

Y1t =—0.74+0.7y11-1 + 0.2y21—1 + €14
yor =1.3 4025161 +0.Tpe-1 + €24

Therefore:

0.7 0.2 —0.7 1 1 05
q’_<0.2 0.7>’C_< 1.3 )’“‘(5)’9_(0.5 1 )

> Phil= matrix(c(0.7, 0.2, 0.2, 0.7), nrow=2, ncol=2)
> mu.vec= c(1,5)

> c.vec= as.vector((diag(2)- Phil) J*}, mu.vec)

> Omega= matrix(c(1, 0.5, 0.5, 1), 2,2)

> library(vars)

> eigen(Phil)$values Lo

[1] 0.9 0.5
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VAR in R

library(tseries)
library (MASS)
set.seed (42)
T = 250
nvar= 2 # 2 variables
y.var = matrix(0,nvar,T)
y.var[,1] = mu.vec
e.var = mvrnorm(T,mu= rep(0, nvar), Sigma=Omega)
e.var = t(e.var)
for (i in 2:T) {
y.var[,i] = c.vec+Phil/*}y.var[,i-1]+e.var[,i]
F
y.var = t(y.var)
dimnames (y.var) = list(NULL,c("y1","y2"))
eigen(Phil)$values

VVV+ +VVVVVVVYVYVYV

[1] 0.9 0.5

> colMeans(y.var)

yi y2 %’

0.6757314 4.7459675
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VAR in R

y.var
] o
3 i W
> : | v»vl'\vv
<
|
w —
N -
> <
O —
I I I I I I
0 50 100 150 200 250

Time %.
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VAR in R

Let us estimate it:

> y1=VAR(y.var, lag.max= 4, ic="AIC")
> y1

VAR Estimation Results:

Estimated coefficients for equation yi:

Call:
yl = y1.11 + y2.11 + const

yi.11 y2.11 const
0.5932973 0.2486591 -0.8995433

Estimated coefficients for equation y2:

Call:
y2 = y1.11 + y2.11 + const

yi.11 y2.11 const
0.1664443 0.7229253 1.2090046

>

Impluse Responses
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VAR in R

Let us estimate it:

> y2=VAR(y.var, p=2)
> y2

VAR Estimation Results:

Estimated coefficients for equation yi:

Call:
yl =y1.11 + y2.11 + y1.12 + y2.12 + const

yi.11 y2.11 yi.12 y2.12 const
0.63052937 0.22582772 -0.07910579 0.05884478 -1.04080425

Estimated coefficients for equation y2:

Call:
y2 = y1.11 + y2.11 + y1.12 + y2.12 + const

yi.11 y2.11 yi.12 y2.12 const
0.18483169 0.71743728 -0.03641378 0.02010926 1.15361456
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Forecast:

> predict(yl, n.ahead= 10)

$y1

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
[7,]
[s,]
[9,1
[10,]

$y2

[Elod]
[2,]
[3,]
[4,]
[5,]
[6,]
[7,]
[8,]
[9,1]
[10,]

SIS IS B IS I B W N WY

fcst

.440713

195191

.994919
.826463

682347

.557938
.450036

356225

.274563
.203431

fcst
622180

.402589
.202975
.025335
.868876
.731781
.611964

507386

.416169
.336634

VAR model

o

-0.
-0.
=ilo
=il;
=il;
=ilg
=ilg
s
Ao

lower
.4864977

lower
766145
996305
460656
054596
735960
481087
274567
105591
966252
850600

2368253
7151820
0714308
3492984
5712537
7512194
8986983
0205449
1218800

upper
4.394929
4.627206
4.705021
4.724357
4.713992
4.687130
4.651292
4.611149
4.569671
4.528742

upper
478216
808874
945295
996075
001793

949361
909180
866086
822668

MLE Bivariate Granger's Causality

VAR in R

CI
1.954215
2.432016
2.710101
2.897894
3.031645
3.129192
3.201256
3.254924
3.295108
3.325311

CI

1.856035
2.406285
2.742319
2.970740
3.132916
982475 3.
3
3
3
3

250694

.337397
.401794
.449917
.486034

Impluse Responses
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Asymptotic distribution of II

If the following conditions are satisfied:
@ Independent innovations,
@ Bounded fourth-cumulant of the innovations, and

@ Roots of the polynomial outside the unit circle

We name i = vec(fIT) which are the estimator of the
coefficients using a sample of size T'. Then,

44 /58
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Asymptotic distribution of 11

o+ YL xex, —F Q where Q = E(x¢x})
Q ar—-Tm

Q0 Qr -7 Q

Q VT(ir —m) — N(0,(2®Q)

For the coefficients of the ith regression

VT (7ir —m) =¥ N(0,07Q 7))
for a? = E(e%t)
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Asymptotic distribution of .

Notation:

011
012
013

011 012 013 021
vec QQ=wec | 091 092 093 | = | 09

031 032 033 023
031
032
| 033

Impluse Responses
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Asymptotic distribution of Q)

Notation: Because the variance covariance matrix is symmetric
012 = 091 and so on. We do not need all the elements. So we have
the same information with the vech function

o011
021
vech Q= v
031
032
033

47 /58
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Asymptotic distribution of Q)

Proposition:
If the innovations are IIDN (0, ) and the roots of the polynomial
are outside the inner circle:

VT (vech(€2 — vech(2))) = N(0, %)

o Elements of {2 are 0;; — variance and covariances amongst
€t and €t

o Elements of X are the covariances between ¢;; and &y, all
1<4,5,l,m<n.

@ These elements are 0,0, + 0im0ji

48 /58
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Important issues

@ Choice of p

o Suggested by theoretical methods
o Rule of thumb
o Statistical criteria (trade-off fit against number of parameters)

@ Choice of variables included in the model

49 /58
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Choice of p

@ Theoretical methods: Keynesian model...

@ Rules of thumb: quarterly data (p=4), monthly data (p=6).
Very large p will result in a lot of parameters. So it is unwise
to fit more than 7'/ parameters in each equation. For
example, p = 4 would mean n < 7.

@ Statistical criteria. We can keep increasing the likelihood by

increasing the number of parameters. We have to find a
trade-off between fit and number of parameters

o AIC

e SBIC

e Hannan-Quinn (HC)

50 /58



Introduction VAR model MLE Bivariate Granger's Causality Impluse Responses

Choice of variables

o By institutional knowledge

@ experience on previous projects,
e context: if we have a small open economy problem, we will be

using foreign output and real exchange rate as variables,
however we wouldn't use liquidity.

@ Theoretical models

Small number of variables means likely high p and high p indicates
the need of more variables

So not only p is important also n.

51/58
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Structural Analysis

o It is very difficult to get conclusions out of outputs of the VAR
model
@ Three main analyses:

© Granger causality test
@ impulse response functions
© forecast error decomposition

52 /58
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Granger's Causality

Granger (1969) introduced the causality problem.

A variable yo; is Granger causal for a time series variable yy; if the
former helps to improve the forecast of the latter.

Let yf I be the optimal h-step forecast of y; at origin ¢ based
on a set information of the universe F;. So s is Granger
non-causal if and only if

* . *
Y1it+n1F = yl,t+h|Ft\{y2t,s|s§t}
S——
Fot

In other words:

MSE(E(y1, 040916, Y161 - - ) = MSE(E (Y1 t4n|Y1ts Y161 - - You, Yo, % - - )
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Bivariate Granger's Causality

Equivalently, we say that yi; is exogenous in the time series sense
with respect to ys; if the above equation holds

Another way to say it is: o is not linearly informative about trhe
future 14

Formally, yo fails to Granger-cause y; if for all s > 0 the MSE of a
forecast of y; 45 based on (yi¢, y1,¢4—1,...) is the same as the
MSE of a forecast of y; 45 based on (y1¢, ¥1,¢—1,...) and

(y2t,2/2,t—1, .- )

The notion of Granger causality does not imply true causality. It
only implies forecasting ability.

f
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Bivariate Granger's Causality in VAR(p)

(yu>:<c> <¢11 0><yu_1)+(§1 o)(;,u_z\
Y2t c ¢12 ¢§2 Y2,t—1 %2 ¢%2 Yo,t—2
P O €
N )(y“—f?>+( ”)

( €2 ¢gz Y2, t—p €2¢

ot does not Granger-cause yy; if the coefficients of matrices ®;
are lower triangular forall j =1,...,p

Q: What about y;; does not Granger-cause i, instead 7 How are
the matrices ®;7
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Econometric tests for Granger's causality

The p linear coefficient restrictions implied by Granger
non-causality may be tested using the Wald statistic

& — ~ -1
Wald =(R - vec(II) {R[AVar(vec(Q)]R’}

~

X (R - vec(IT)
Hj : y does not Granger-cause y;
Hy:prg=...=¢f, =

@ The null hypothesis is rejected if Wald > F(p, T —2p — 1)

@ R in the Wald statistics does not refer to the cross correlation
function but to set of linear constraints.

@ For example, to test Hy : ¢y = ¢y then
R = (1,0,0,...,-1,0,...,0) where -1 is in the n + 1 Of
position. Then Rmr =0= ¢; = ¢
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Vector MA(o0) representation of VAR

If the VAR(p) process is covariance-stationary, then we can
represent it as a Vector MA(o0):

yi=p+ e+ Vieg—1 + Parep_2+ ...

W, is the impact of the shock €; upon y;1s holding the rest
constant:
U, — 3Yt+s

O€),
This matrix is also called the Impulse Response (IR). Its ij element
identifies the consequences of one unit increase in the jth
variable's innovations at date t (€j) for the value of the ith
variable at time ¢+ s (y; ++s), holding all the innovations constant.

f

57 /58



Introduction VAR model MLE Bivariate Granger's Causality Impluse Responses

Impulse response functions

(4]

We would like to know whether the IRF can tell us about the
effect of a change in y;; on ¥; 4.

1 &3 A
Yy 145 _ OYitys o

yjt €t

(7]

The answer is no in general, unless € is diagonal
(uncorrelated errors).

@ We can transform our VAR model into a model with
uncorrelated errors.

(]

Sims (1980) show how to do this transformation and how to
estimate the triangular structural VAR (SVAR).

He got a Nobel prize last year for this kind of work. 4o

(7]
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