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Estimating GARCH by MLE

Consider estimating the model

rt =µt + εt = Xtβ + εt

εt =ztσt , zt ∼ IIDN (0, 1)

σ2
t =a0 + a(L)ε2t + b(L)σ2

t

Result: The regression parameters β and GARCH parameters
γ = (a0, a1, . . . , ap , b1, . . . , bq)′ can be estimated separately
because the information matrix for θ = (β′, γ′)′ is block diagonal.
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Estimating GARCH by MLE

Step 1 Estimate β by OLS ignoring ARCH errors and form
residuals ε̂t = rt −Xβ

Step 2 Estimate GARCH process for residuals ε̂t by MLE.

Warning: Block diagonality of information matrix fails if

pdf of zt is not a symmetric density

β and γ are not variation free; e.g. GARCH-M model
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GARCH likelihood function under normality

Assume µt = 0. Let θ = (a0, a1, . . . , ap , b1, . . . , bq)′ denote the
parameters to be estimated. Since εt = ztσt

f (εt |Ft−1; θ) =
1√

2πσ2
t

exp
{
− ε2t

2σ2
t

}
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GARCH likelihood function under normality

For a sample of size T , the prediction error decomposition gives

fε(εt , . . . , εT ; θ) =
T∏

t=p+1

fεt |Ft−1(εt |εt−1, . . . ε1; θ) fε1,...,εp (ε1, . . . , εp ; θ)︸ ︷︷ ︸
no closed form

=

(
T∏

t=p+1

1√
2πσ2

t

exp
{
− ε2t

2σ2
t

})
fε1,...,εp (ε1, . . . , εp ; θ)

where σ2
t = a0 + a(L)ε2t + b(L)σ2

t may be evaluated recursively
given starting values for σ2

t . The log-likelihood function is
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GARCH likelihood function under normality

The exact log-likelihood function

L(θ) =− (T −m + 1)
2

ln(2π)− 1
2

T∑
t=p+1

[
ln(σ2

t ) +
ε2t
σ2

t

]
+ log(fε1,...,εp (ε1, . . . , εp ; θ))
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GARCH likelihood function under normality

Problem: the marginal density for the initial values does not
have a closed form expression so exact mle is not possible.

In practice: initial values (ε1, . . . , εp) are set equal to zero and
the marginal density f (ε1, . . . , εp ; θ) is ignored.

This is conditional mle.
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Practical issues

Starting values for the model parameters ai : (i = 0, . . . , p)
and bj : (j = 1, . . . , q) need to be chosen and an initialization
of ε2t and σ2

t must be supplied.

Zero values are often given for ai : i > 1 and bj

a0 is set equal to the unconditional variance of rt
For the initial values of σ2

t , a popular choice is

σ2
t = ε2t =

1
T

T∑
s=p+1

y2
s , t < p
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Practical issues

Once the log-likelihood is initialized, it can be maximized
using numerical optimization techniques. The most common
method is based on a Newton-Raphson iteration of the form

θ̂n+1 = θ̂n − λnH(θ̂n)−1s(θ̂n)

For GARCH models, the BHHH algorithm is often used. This
algorithm approximates the Hessian matrix using only first
derivative information

−H(θ) ≈ B(θ) =
T∑

t=1

∂lt
∂θ

∂lt
∂θ′

Under suitable regularity conditions, the ML estimates are
consistent and asymptotically normally distributed and an
estimate of the asymptotic covariance matrix of the ML
estimates is constructed from an estimate of the final Hessian
matrix from the optimization algorithm used.
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Numerical Accuracy of GARCH Estimates

GARCH estimation is widely available in a number of
commercial software packages (e.g. EVIEWS, GAUSS,
MATLAB, Ox, RATS, S-PLUS, TSP) and there are also a few
free open source implementations. (Even Excel!)

Starting values, optimization algorithm choice, and use of
analytic or numerical derivatives, and convergence criteria all
influence the resulting numerical estimates of the GARCH
parameters.

The GARCH log-likelihood function is not always well
behaved, especially in complicated models with many
parameters, and reaching a global maximum of the
log-likelihood function is not guaranteed using standard
optimization techniques. Poor choice of starting values can
lead to an ill-behaved log-likelihood and cause convergence
problems.
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Numerical Accuracy of GARCH Estimates

In many empirical applications of the GARCH(1,1) model, the
estimate of a1 is close to zero and the estimate of b1 is close
to unity. This situation is of some concern since the GARCH
parameter b1 becomes unidentified if a1 = 0, and it is well
known that the distribution of ML estimates can become
ill-behaved in models with nearly unidentified parameters.

Ma, Nelson and Startz (2007) studied the accuracy of ML
estimates of the GARCH parameters a0, a1 and b1 when a1 is
close to zero. They found that the estimated standard error
for b1 is spuriously small and that the t-statistics for testing
hypotheses about the true value of b1 are severely size
distorted. They also showed that the concentrated
loglikelihood as a function of b1 exhibits multiple maxima.
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Numerical Accuracy of GARCH Estimates

To guard against spurious inference they recommended
comparing estimates from pure ARCH(p) models, which do
not suffer from the identification problem, with estimates from
the GARCH(1,1). If the volatility dynamics from these models
are similar then the spurious inference problem is not likely to
be present.
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Quasi-Maximum Likelihood Estimation

The assumption of conditional normality is not always
appropriate.

However, even when normality is inappropriately assumed,
maximising the Gaussian log-likelihood results in
quasi-maximum likelihood estimates (QMLEs) that are
consistent and asymptotically normally distributed provided
the conditional mean and variance functions of the GARCH
model are correctly specified.

An asymptotic covariance matrix for the QMLEs that is
robust to conditional non-normality is estimated using

H(θ̂
QML

)
−1

B(θ̂
QML

)H(θ̂
QML

)
−1

where θ̂QML denotes the QMLE of θ, and is often called the
”sandwich” estimator.
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Determining lag length

Use model selection criteria (AIC or BIC)

For GARCH(p, q) models, those with p, q ≤ 2 are typically
selected by AIC and BIC.

Low order GARCH(p,q) models are generally preferred to a
high order ARCH(p) for reasons of parsimony and better
numerical stability of estimation (high order GARCH(p, q)
processes often have many local maxima and minima).

For many applications, it is hard to beat the simple
GARCH(1,1) model.
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Model Diagnostics

Correct model specification implies

ε̂t
σ̂t
∼ IIDN (0, 1)

Test for normality — Jarque-Bera, QQ-plot

Test for serial correlation — Ljung-box, SACF, SPACF

Test for ARCH effects — serial correlation in squared
standardized residuals, LM test for ARCH
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Returns forecast for a GARCH model

Suppose one is interested in forecasting future values of rt in
the standard GARCH model.

For simplicity assume that E [rt+1|Ft ] = c ⇒ rt = c + σtzt .

The h-step-ahead forecast of r∗T+h|T = c which does not
depend on the GARCH parameters

The forecast error is εT+h = σT+hzt+h

The conditional variance of this forecast error is then

Var(εT+h) = E [σ2
T+h |FT ] = σ2∗

T+h

which does depend on the GARCH parameters.

Therefore, in order to produce confidence bands for the
h-step-ahead forecast of the returns, the h-step-ahead
volatility forecast is needed.
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Volatility forecast for a GARCH(1,1)

It is similar to the ARMA model.

1-step-ahead forecast (all known)

σ2∗
T+1 = a0 + a1ε

2
T + b1σ

2
T

2-step-ahead forecast: ε2t = σ2
t z

2
t

σ2∗
T+2 = a0 + (a1 + b1)σ2∗

T+1

h-step-ahead forecast

σ2∗
T+h =a0 + (a1 + b1)σ2∗

T+h−1

=
a0(1− (a1 + b1)h−1)

1− a1 − b1
+ (a1 + b1)h−1σ2∗

T+1
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Volatility forecast for a GARCH(1,1)

If (a1 + b1) < 1, then

σ2∗
T+h →

a0

1− a1 − b1

when h →∞

The multistep-ahead volatility forecasts of a GARCH(1,1) converge
to the unconditional variance of εt as the forecast increases to
infinity, provided Var(εt) exists.
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Volatility forecast for a GARCH(1,1)

Remarks

The forecast of volatility (standard deviation) is defined as

E [σT+k |FT ] 6= (E [σ2
T+k |FT ])1/2 (by Jensen’s inequality)

Standard errors for E [σT+k |FT ] are not available in closed
form but may be computed using simulation methods.
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Forecasting the Volatility of Multiperiod Returns

Let rt = log(Pt)− log(Pt−1). The GARCH forecasts are for
daily volatility at different horizons h.

For risk management and option pricing with stochastic
volatility, volatility forecasts are needed for multiperiod
returns.

With continuously compounded returns, the h-day return
between days T and T + h is simply the sum of h single day
returns

rT+h(h) =
h∑

j=1

rT+j
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Forecasting the Volatility of Multiperiod Returns

Assuming returns are uncorrelated, the conditional variance of
the h-period return is then

Var(rT+h(h)|FT ) =σ2
T (h) =

h∑
j=1

var(rT+j |FT )

=E [σ2
T+1|FT ] + . . .+ E [σ2

T+h |FT ]

If returns have constant variance σ̄2, then σ2
T (h) = hσ̄2 and

σT (h) =
√

hσ̄.

This is known as the ”square root of time” rule as the h-day
volatility scales with

√
h.

In this case, the h-day variance per day, σ2
T (h)/h, is constant.
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Forecasting the Volatility of Multiperiod Returns

If returns are described by a GARCH model then the square
root of time rule does not necessarily apply.

Plugging the GARCH(1,1) model forecasts for
E [σ2

T+1|FT ], . . . ,E [σ2
T+h |FT ] into var(rT+h(h)|FT ) gives:

σ2
T (h) = hσ̄2 + (E [σ2

T+1]− σ̄2)
[

1− (a1 + b1)h

1− (a1 + b1)

]
For the GARCH(1,1) process the square root of time rule only
holds if E [σ2

T+1] = σ̄2. Whether σ2
T (h) is larger or smaller

than hσ̄2 depends on whether E [σ2
T+1] is larger or smaller

than σ̄2.

Term structure of volatility is a plot of σ2
T (h)/h versus h
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GARCH-in-Mean (GARCH-M)

Modern finance theory suggests that volatility may be related to
risk premia on assets.

The GARCH-M model allows time-varying volatility to be realted
to expected returns

rt = c + ασ2
t + εt εt ∼ GARCH

α is the risk premium parameter

α > 0 indicates taht the return is positively related to its
volatility

Other risk premium specifications:

rt = c + ασt + εt
rt = c + α ln(σ2

t ) + εt
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Temporal Aggregation

Volatility clustering and non-Gaussian behavior in financial
returns is typically seen in weekly, daily or intraday data. The
persistence of conditional volatility tends to increase with the
sampling frequency.

For GARCH models there is no simple aggregation principle
that links the parameters of the model at one sampling
frequency to the parameters at another frequency. This occurs
because GARCH models imply that the squared residual
process follows an ARMA type process with MDS innovations
which is not closed under temporal aggregation.
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Temporal Aggregation

The practical result is that GARCH models tend to be fit to
the frequency at hand. This strategy, however, may not
provide the best out-of-sample volatility forecasts. For
example,Martens (2002) showed that a GARCH model fit to
S&P 500 daily returns produces better forecasts of weekly and
monthly volatility than GARCH models fit to weekly or
monthly returns, respectively.
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Asymmetric Leverage Effects and News Impact

In the basic GARCH model, since only squared residuals ε2t−i

enter the conditional variance equation, the signs of the
residuals or shocks have no effect on conditional volatility.

A stylized fact of financial volatility is that bad news (negative
shocks) tends to have a larger impact on volatility than good
news (positive shocks). That is, volatility tends to be higher
in a falling market than in a rising market. Black (1976)
attributed this effect to the fact that bad news tends to drive
down the stock price, thus increasing the leverage (i.e., the
debt- equity ratio) of the stock and causing the stock to be
more volatile. Based on this conjecture, the asymmetric news
impact on volatility is commonly referred to as the leverage
effect.
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Testing for Asymmetric Effects on Conditional Volatility

A simple diagnostic for uncovering possible asymmetric
leverage effects is the sample correlation between rt and rt−1.
A negative value of this correlation provides some evidence for
potential leverage effects.

Other simple diagnostics, result from estimating the following
test regression

ε̂2t = β0 + β1ŵt−1 + ξt

where ŵt−1 is a variable constructed from εt−1 and the sign of
εt−1. A significant value of β1 indicates evidence for
asymmetric effects on conditional volatility.

28 / 64



MLE Extensions of GARCH GARCH extensions Forecasting Leptokurtosis Effects

Testing for Asymmetric Effects on Conditional Volatility

Let S−t−1 denote a dummy variable equal to unity when ε̂t−1 is
negative, and zero otherwise. Engle and Ng consider three
tests for asymmetry:

Setting ŵt−1 = S−t−1 gives the Sign Bias test;

Setting ŵt−1 = S−t−1ε̂t−1 gives the Negative Size Bias test; and

Setting ŵt−1 = S+
t−1ε̂t−1 gives the Positive Size Bias test.
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EGARCH (p, q) Model

Nelson (1991) proposes the exponential GARCH model.

This model explains asymmetric effects between positive and
negative returns

Define ht = ln(σ2
t )

rt =µt + σtzt

ht =a0 +
q∑

i=1

aig(zt−i) +
q∑

j=1

bjht−j

g(zt) =θzt + γ[|zt | − E (|zt |)]
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EGARCH (p, q) Model

Polynomials 1 + b(L) and 1− a(L) have zeros outside the
unit circle and have no common factors

Variance is always positive because σ2
t = exp(ht)

A positive εt−i contributes with ai(1 + γi)|zt−i | to the log
volatility

A negative gives ai(1− γi)|zt−i |
We expect a negative γi in real applications. Why?
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Example EGARCH(1,1)

rt =µt + εt

εt =σtzt zt ∼ N (0, 1)
ht =a0 + a1(θzt + γ[|zt | − E (|zt |)]) + b1ht−1

If γ < 0, this means the levearage effect of εt−1
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Example EGARCH(1,1)

The application is run on the monthly GM simple returns, file
”m-gmsp500.txt”

The R function egarch fits an EGARCH (p,q) with a normal or
a GED distributed innovations

Their formula is:

ht =β0 +
q∑

j=1

ηj εt−j

+
q∑

j=1

γj (|εt−j | − E (|εt−j |) +
p∑

i=1

βiht−i

include.shape=T implies that the GED is used as the
distribution of innovations
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Example EGARCH(1,1)

> options(width = 55)

> library(egarch)

> gm <- read.table("../data/m-gmsp500.txt",

+ h = T)[, 2]

> gmln = log(gm + 1)

> gm.egarch = egarch(gmln, order = c(1, 1),

+ include.mu = T, include.shape = T)
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Example EGARCH(1,1)

> print(gm.egarch)

$mu

mu

0.0685876

$beta

beta0 beta1

0.05807339 1.00828524

$eta

eta1

0.0965128

$gamma

gamma1

0.2498223

$nu

nu

1.705952

$ics

AIC BIC HQIC

-2.442644 -2.403979 -2.427705

attr(,"class")

[1] "egarch"
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Example EGARCH(1,1)

rt =0.0686 + εt zt ∼ GED(ν = 1.706)

ht =0.0581 + 0.0965zt−1

+ 0.2498(|zt | − E (|zt |)) + 1.0083ht−1
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TGARCH/GJR Model

Zakoian (1994) introduces the Threshold GARCH (aka GJR -
Glosten, Jagannathan, and Runkle , 1993). A TGARCH(p,q)

σδt =a0 +
p∑

i=1

(ai + γiSt−i)εδt−i +
q∑

j=1

bjσ
δ
t−j

St−i =
{

1 if εt−i < 0
0 if εt−i ≥ 0

The model uses zero as the threshold to separate impacts, but
other thresholds can be used

δ = 1 TGARCH

δ = 2 GJR
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TGARCH/GJR Model

When εt−i is positive, the total effects are aiε
δ
t−i

When εt−i is negative, the total effects are (ai + γi)εδt−i

Leverage effect implies that γi > 0
TGARCH/GJR is covariance stationary provided∑p

i=1(ai + γi/2) +
∑q

j=1 bj < 1
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Example GJR(1,1)

Monthly GM log returns as like in the previous example.

> library(fGarch)

> gm.GJR = garchFit(gmln ~ 1 + aparch(1, 1),

+ trace = F, include.shape = T, cond.dist = "ged",

+ delta = 2, leverage = T, include.delta = 2)

> coef = round(coef(gm.GJR), 4)

> coef

mu omega alpha1 gamma1 beta1 shape
-0.0164 0.0217 0.0972 0.0960 0.7948 3.9983

rt =− 0.0164 + εt zt ∼ GED(ν = 3.9983)

σ2
t =0.0217 + (0.0972 + 0.096St−1)ε2t−1 + 0.7948σ2

t−1
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A-PARCH Model

Ding, Granger and Engle (1993) Asymmetric Power ARCH model:

σd
t = a0 +

p∑
i=1

ai(|εt−i |+ γiεt−i)d +
q∑

j=1

bjσ
d
t−j

a0 > 0, d > 0, −1 < γi < 1
Leverage effect implies that γi < 0
d = 2, γi = 0, bj = 0 ⇒ ARCH

d = 2, γi = 0 ⇒ GARCH

d = 2 ⇒ GJR , d = 1 ⇒ TGARCH

d = 1, γi = 0 ⇒ Taylor/Schwert’s GARCH for standard
deviation

d can be fixed at a particular value or estimated by MLE
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News Impact Curve

Engle and Ng propose the use of the news impact curve to
evaluate asymmetric GARCH models:

The news impact curve is the functional relationship
between conditional variance at time t and the shock
term (error term) at time t − 1, holding constant the
information dated t − 2 and earlier, and with all lagged
conditional variance evaluated at the level of the
unconditional variance.
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Forecasts from Asymmetric GARCH(1,1) Models

Consider the TGARCH(1,1) model at time T

σ2
T = a0 + a1ε

2
T−1 + γ1ST−1ε

2
T−1 + b1σ

2
T−1

Assume that εt has a symmetric distribution about zero. The
forecast for T + 1 based on information at time T is

E [σ2
T+1|FT ] = a0 + a1ε

2
T + γ1ST ε

2
T + b1σ

2
T

where it assumed that ε2T , ST and σ2
T are known. Hence, the

TGARCH(1,1) forecast for T + 1 will be different than the
GARCH(1,1) forecast if ST = 1 ( εT < 0).
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Forecasts from Asymmetric GARCH(1,1) Models

The forecast at T + 2 is

E [σ2
T+2|FT ] =a0 + a1E [ε2T+1|FT ] + γ1E [ST+1ε

2
T+1|FT ] + b1E [σ2

T+1|FT ]

=a0 + (
γ1

2
+ a1 + b1)E [σ2

T+1|FT ]

which follows since

E [ST+1ε
2
T+1|FT ] = E [ST+1|FT ]E [ε2T+1|FT ] =

1
2
E [σ2

T+1|FT ]

Notice that the asymmetric impact of leverage is present even
if ST = 0.

By recursive substitution for the forecast at T + h is

E [σ2
T+h |FT ] = a0 + (

γ1

2
+ a1 + b1)h−1E [σ2

T+1|FT ]

which is similar to the GARCH(1,1) forecast.
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Forecasts from Asymmetric GARCH(1,1) Models

The mean reverting form is

E [σ2
T+h |FT ]− σ̄2 = a0 +(

γ1

2
+a1 +b1)h−1(E [σ2

T+1|FT ]− σ̄2)

where σ̄2 = a0/(1− γ1
2 − a1 − b1) is the long run variance.

Forecasting algorithm in the EGARCH(1,1) follow in a similar
manner.
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GARCH Models with Non-Normal Errors

Often the standardized residuals from a GARCH model with
Gaussian errors still has fat tails. This suggests using a
fat-tailed error distribution instead.

The most common fat-tailed error distributions for fitting
GARCH models are: the Student-t distribution; the double
exponential distribution; and the generalized error distribution.
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GARCH with Student-t errors

Let ut be Student-t random variable degrees of freedom parameter
ν and scale parameter st . Then

f (ut) =
Γ[(ν + 1)/2]s−1/2

t

(φν)1/2Γ(ν/2)[1 + u2
t /(stν)](ν+1)/2

Var(ut) =
stν
ν − 2

, ν > 2

If ut in GARCH model is Student-t with E [u2
t |Ft−1] = σ2

t then,

st =
σ2

t (ν − 2)
ν

46 / 64



MLE Extensions of GARCH GARCH extensions Forecasting Leptokurtosis Effects

Generalised Error Distribution

Nelson suggested using the generalized error distribution (GED)
with parameter ν > 0. If ut is distributed GED with parameter ν
then

f (ut) =
ν exp[−(1/2)|ut/λ|ν ]
λ2(ν+1)/νΓ(1/ν)

where

λ =

[
2−2/νΓ(1/ν)

Γ(3/ν)

]1/2

ν = 2 gives the normal distribution

0 < ν < 2 gives a distribution with fatter tails than normal

ν > 2 gives a distribution with thinner tails than normal

ν = 1 gives the double exponential distribution
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Long Memory GARCH Models

If returns follow a GARCH(p, q) model, then the
autocorrelations of the squared and absolute returns should
decay exponentially.

However, the SACF of r2
t and |rt | often appear to decay much

more slowly. This is evidence of so-called long memory
behavior.

Formally, a stationary process has long memory or long range
dependence if its autocorrelation function behaves like

ρk = Cρk2d−1 as k →∞

where Cρ is a positive constant, and d is a real number
between 0 and 1/2.

Thus the autocorrelation function of a long memory process decays
slowly at a hyperbolic rate.
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Integrated GARCH Model

The high persistence often observed in fitted GARCH(1,1)
models suggests that volatility might be nonstationary
implying that a1 + b1 = 1, in which case the GARCH(1,1)
model becomes the integrated GARCH(1,1) or IGARCH(1,1)
model.

In the IGARCH(1,1) model the unconditional variance is not
finite and so the model does not exhibit volatility mean
reversion. However, it can be shown that the model is strictly
stationary provided E [ln(a1z 2

t + b1)] < 0.
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Integrated GARCH Model

Diebold and Lopez (1996) argued against the IGARCH
specification for modeling highly persistent volatility processes
for two reasons

1 the observed convergence toward normality of aggregated
returns is inconsistent with the IGARCH model.

2 the observed IGARCH behavior may result from
misspecification of the conditional variance function. For
example, a two components structure or ignored structural
breaks in the unconditional variance can result in IGARCH
behavior.
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Evaluating Volatility Predictions

GARCH models are often judged by their out-of-sample
forecasting ability

This forecasting ability can be measured using traditional
forecast error metrics as well as with specific economic
considerations such as value-at- risk violations, option pricing
accuracy, or portfolio performance.

Out-of-sample forecasts for use in model comparison are
typically computed using one of two methods.
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Evaluating Volatility Predictions

1 Recursive forecasts: An initial sample using data from
t = 1, . . . ,T is used to estimate the models, and h-step-ahead
out-of-sample forecasts are produced starting at time T . The
sample is increased by one, the models are re-estimated, and
h-step-ahead forecasts are produced starting at T + 1.

2 Rolling forecasts. An initial sample using data from
t = 1, . . . ,T is used to determine a window width T , to
estimate the models, and to form h-step-ahead out-of-sample
forecasts starting at time T . Then the window is moved
ahead one time period, the models are re-estimated using data
from t = 2, . . . ,T + 1, and h-step-ahead out-of-sample
forecasts are produced starting at time T + 1.
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Traditional Forecast Evaluation Statistics

Let Ei [σ2
T+h |FT ] denote the h-step ahead forecast of σ2

T+h at
time T from GARCH model i using either recursive or rolling
methods.

Define the corresponding forecast error as
ei ,T+h|T = Ei [σ2

T+h ]− σ2
T+h

Common forecast evaluation statistics

MSEi =
1
N

N∑
j=T+1

e2
i ,j+h|j

MAEi =
1
N

N∑
j=T+1

|ei ,j+h|j |

MAPEi =
1
N

N∑
j=T+1

|ei ,j+h|j |
σj+h
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Traditional Forecast Evaluation Statistics

The model which produces the smallest values of the forecast
evaluation statistics is judged to be the best model.

Of course, the forecast evaluation statistics are random
variables and a formal statistical procedure should be used to
determine if one model exhibits superior predictive
performance.
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Diebold-Mariano Tests for Predictive Accuracy

Let {e1,j+h|j }T+N
T+1 and {e2,j+h|j }T+N

T+1 denote forecast errors
from two different GARCH models.

The accuracy of each forecast is measured by a particular loss
function L(ei ,T+h|T ), i = 1, 2. Common choices:

squared error loss function: L(ei,T+h|T ) = (ei,T+h|T )2

absolute error loss function: L(ei,T+h|T ) = |ei,T+h|T |
The Diebold-Mariano (DM) test is based on the loss
differential

dT+h = L(e1,T+h|T )− L(e2,T+h|T )
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Diebold-Mariano Tests for Predictive Accuracy

The null of equal predictive accuracy is H0 : E [dT+h ] = 0
The DM test statistic is

S =
d̄

(̂̄d)1/2
, d̄ =

1
N

T+N∑
j=T+1

dj+h

Diebold and Mariano recommend using the Newey-West
estimate for AVar(d) because the sample of loss differentials
{dj+h}T+N

T+1 are serially correlated for h > 1.

Under the null of equal predictive accuracy,

S ∼ N (0, 1)
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Diebold-Mariano Tests for Predictive Accuracy

Hence, the DM statistic can be used to test if a given forecast
evaluation statistic (e.g. MSE1) for one model is statistically
different from the forecast evaluation statistic for another model
(e.g. MSE2).
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Mincer-Zarnowitz Forecasting Regression

Forecasts are also often judged using the forecasting regression

σ2
T+h = α+ βEi [σ2

T+h |FT ] + ei ,T+h

Unbiased forecasts have α = 0 and β = 1, and accurate
forecasts have high regression R2 values.

In practice, the forecasting regression suffers from an
errors-in-variables problem when estimated GARCH
parameters are used to form Ei [σ2

T+h |FT ] and this creates a
downward bias in the estimate of β. As a result, attention is
more often focused on the R2.
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Fundamental Problem with Evaluating Volatility Forecasts

An important practical problem with applying forecast
evaluations to volatility models is that the h-step-ahead
volatility σ2

t+h is not directly observable.

Typically, ε2T+h (or just the squared return) is used to proxy
σ2

T+h since

E [ε2T+h |FT ] = E [z 2
T+hσ

2
T+h |FT ] = E [σ2

T+h ]

ε2T+h is a very noisy proxy for σ2
T+h since

Var(ε2T+h) = E [σ4
T+h ](κ− 1), where kappa is the fourth

moment of zt , and this causes problems for the interpretation
of the forecast evaluation metrics.

59 / 64



MLE Extensions of GARCH GARCH extensions Forecasting Leptokurtosis Effects

Fundamental Problem with Evaluating Volatility Forecasts

Many empirical papers have evaluated the forecasting
accuracy of competing GARCH models using ε2T+h as a proxy
for σ2

T+h . Poon (2005) gave a comprehensive survey.

The typical findings are that the forecasting evaluation
statistics tend to be large, the forecasting regressions tend to
be slightly biased, and the regression R2 values tend to be
very low (typically below 0.1).

In general, asymmetric GARCH models tend to have the
lowest forecast evaluation statistics. The overall conclusion,
however, is that GARCH models do not forecast very well.
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Fundamental Problem with Evaluating Volatility Forecasts

Andersen and Bollerslev (1998) provided an explanation for
the apparent poor forecasting performance of GARCH models
when ε2T+h is used as a proxy for σ2

T+h .

For the GARCH(1,1) model in which zt has finite kurtosis κ,
they showed that the population R2 value in the forecasting
regression with h = 1 is equal to

R2 =
a2
1

1− b2
1 − 2a1b1

,

and is bounded from above by 1/κ. Assuming zt ∼ N (0, 1),
this upper bound is 1/3. With a fat-tailed distribution for zt
the upper bound is smaller.

Hence, very low R2 values are to be expected even if the true
model is a GARCH(1,1).
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Fundamental Problem with Evaluating Volatility Forecasts

Moreover, Hansen and Lund (2004) found that the
substitution of ε2T+h for σ2

T+h in the evaluation of GARCH
models using the DM statistic can result in inferior models
being chosen as the best with probability one.

These results indicate that extreme care must be used when
interpreting forecast evaluation statistics and tests based on
ε2T+h
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Using Realized Variance to Evaluate Volatility Forecasts

If high frequency intraday data are available, then instead of
using ε2T+h to proxy σ2

T+h Andersen and Bollerslev (1998)
suggested using the so-called realized variance

RV m
t+h =

m∑
j=1

r2
t+h,j

where {rT+h,1, . . . , rT+h,m} denote the squared intraday
returns at sampling frequency 1/m for day T + h.

For example, if prices are sampled every 5 minutes and trading
takes place 24 hours per day then there are m = 288 5-minute
intervals per trading day.
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Using Realized Variance to Evaluate Volatility Forecasts

Under certain conditions, RV m
t+h is a consistent estimate of

σ2
t+h as m →∞. As a result, RV m

T+h is a much less noisy
estimate of σ2

T+h than ε2T+h and so forecast evaluations
based on the realised variance are expected to be much more
accurate than those based on the squared residuals.

For example, in evaluating GARCH(1,1) forecasts for the
Deutschemark- US daily exchange rate, Andersen and
Bollerslev reported R2 values of 0.047, 0.331 and 0.479 using
ε2T+1, RV 24

T+1 and RV 2
T+188, respectively.
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