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(Hamilton: Chapters 3.1-3.2)
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Summary statistics Stationarity Ergodicity

Summary statistics, stationarity and ergodicity

Definitions

Expectation, variance, covariance and autocorrelation
Stationarity
Ergodicity
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Summary statistics Stationarity Ergodicity

Summary statistics: expectation

Expectations and variances:

Consider I sequences of the process {Yt}∞t=−∞
For example, computer 1 generates a sequence

y(1) = {. . . , y(1)
−1 , y

(1)
0 , y(1)

1 , . . .}, computer 2 generates y(2) ....

computer I generates y(I )

Select the t-th observation from each of the I sequences.
This gives the sample (denoted I realizations of the random

variable Y (i)
t )

y(1)
t , y(2)

t , ...., y(I )
t .

Let fYt (yt) denote the unconditional density of Yt . The
unconditional expectation of Yt is then given as

E (Yt) =
∫

yt fYt (yt)dyt ,
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Summary statistics Stationarity Ergodicity

Summary statistics: 6 different processes

AR(1) yt = 0.1 + 0.2yt−1 + εt ε ∼ N (0, 1)
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Summary statistics Stationarity Ergodicity

Summary statistics: ensemble average

Value at time t = 40 of each process
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Summary statistics Stationarity Ergodicity

Summary statistics: ensemble average

The ensemble average at time t = 40
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Summary statistics Stationarity Ergodicity

Summary statistics: expectation

The unconditional expectation of Yt is equal to the
probability limit of the ensemble average

E (Yt) = plim
1
I

I∑
i=1

Y (i)
t ,

≡ µt
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Summary statistics Stationarity Ergodicity

Summary statistics: expectation

I = 1000
yt = 0.1 + 0.2yt−1 + εt ε ∼ N (0, 1)

µt = 0.1/(1− 0.2) = 0.125

t y.1 y.2 y.3 y.4 y.5 y.6 ensemble mean

5 1.04 -0.09 0.34 1.21 -1.85 0.98 0.09
10 -0.33 -0.81 0.14 0.25 1.14 0.22 0.12
11 -0.74 0.59 -0.23 -0.02 -0.98 0.76 0.12
12 1.13 0.54 -2.12 -1.05 -1.89 -0.20 0.11
13 2.17 0.35 -0.03 -0.91 -1.92 0.17 0.12
45 -0.44 0.96 0.71 -0.44 -1.06 -1.23 0.16
50 0.96 -1.22 -1.13 -0.59 0.13 -0.46 0.13
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Summary statistics Stationarity Ergodicity

Summary statistics: 6 different processes

AR(1) zt = cos(t) + 0.2zt−1 + εt ε ∼ N (0, 1)
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Summary statistics Stationarity Ergodicity

Summary statistics: expectation

I = 1000
zt = cos(t) + 0.2zt−1 + εt ε ∼ N (0, 1)

µt =
1

0.8
cos(t)

t z.1 z.2 z.3 z.4 z.5 z.6 mean

5 1.22 0.10 0.53 1.40 -1.66 1.17 0.28
10 -1.27 -1.75 -0.80 -0.69 0.20 -0.72 -0.82
11 -0.83 0.50 -0.32 -0.12 -1.08 0.66 0.02
12 1.87 1.29 -1.38 -0.31 -1.14 0.54 0.86
13 2.98 1.16 0.78 -0.10 -1.11 0.97 0.92
45 -0.01 1.38 1.13 -0.02 -0.64 -0.80 0.59
50 1.82 -0.36 -0.26 0.27 0.99 0.41 0.99
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Summary statistics Stationarity Ergodicity

Exercise: expectation

Calculate the unconditional expectation of the following first-order
moving average model:

MA(1) yt = 3 + εt + 0.5εt−1 ε ∼ N (2, 1)

E (yt) = E (3) + E (εt) + 0.5E (εt−1) = 3 + 2 + 1 = 6

What about the expectation of:

yt = 6t + εt + 0.5εt−1 ε ∼ N (0, 1)?
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Summary statistics Stationarity Ergodicity

Summary statistics: variance

The unconditional variance of Yt

γ0t ≡ E (Yt − µt)2 =
∫

(yt − µt)2fYt (yt)dyt

=plim
1
I

I∑
i=1

(y(i)
t − µt)2.
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Summary statistics Stationarity Ergodicity

Summary statistics: variance

I = 1000

yt = 0.1 + 0.2yt−1 + εt ε ∼ N (0, 1)

t y.1 y.2 y.3 y.4 y.5 y.6 var

5 1.04 -0.09 0.34 1.21 -1.85 0.98 1.12
10 -0.33 -0.81 0.14 0.25 1.14 0.22 1.00
11 -0.74 0.59 -0.23 -0.02 -0.98 0.76 1.00
12 1.13 0.54 -2.12 -1.05 -1.89 -0.20 1.01
13 2.17 0.35 -0.03 -0.91 -1.92 0.17 1.07
45 -0.44 0.96 0.71 -0.44 -1.06 -1.23 1.06
50 0.96 -1.22 -1.13 -0.59 0.13 -0.46 0.94
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Summary statistics Stationarity Ergodicity

Summary statistics: variance

I = 1000

zt = cos(t) + 0.2zt−1 + εt ε ∼ N (0, 1)

t z.1 z.2 z.3 z.4 z.5 z.6 var

5 1.22 0.10 0.53 1.40 -1.66 1.17 1.12
10 -1.27 -1.75 -0.80 -0.69 0.20 -0.72 1.00
11 -0.83 0.50 -0.32 -0.12 -1.08 0.66 1.00
12 1.87 1.29 -1.38 -0.31 -1.14 0.54 1.01
13 2.98 1.16 0.78 -0.10 -1.11 0.97 1.07
45 -0.01 1.38 1.13 -0.02 -0.64 -0.80 1.06
50 1.82 -0.36 -0.26 0.27 0.99 0.41 0.94

14 / 46



Summary statistics Stationarity Ergodicity

Exercise: variance

Calculate the unconditional variance of the following first-order
moving average model (MA(1)):

yt = 3 + εt + 0.5εt−1 ε ∼ N (2, 1)

Var(yt) =Var(3) + Var(εt) + Var(0.5εt−1)

=0 + 1 + 0.52(1) = 1.25

What about the variance of:

yt = 6t + εt + 0.5εt−1 ε ∼ N (0, 1)?
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Summary statistics Stationarity Ergodicity

Summary statistics: autocovariance

Autocovariances:

Consider a particular realisation {y(i)
t }∞−∞ and define the

vector x(i)
t = (y(i)

t , y(i)
t−1, ..., y

(i)
t−j )

′

We are interested in the distribution of x(i)
t across realizations

of i , i.e., the joint distribution of Yt ,Yt−1, ...,Yt−j , which we

denote FYt ,Yt−1,...,Yt−j (x
(i)
t )

The j th autocovariance of Yt , defined as
γjt ≡ E (Yt − µt)(Yt−j − µt−j ), equals (for a given realization
of i)

γjt =
∫ ∞
−∞

...

∫ ∞
−∞

(y(i)
t −µt)(y

(i)
t−j−µt−j )fYt ,...,Yt−j (x

(i)
t )∂y(i)

t ...∂y(i)
t−j .
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Summary statistics Stationarity Ergodicity

Summary statistics: autocovariance

Again, we can think of the autocovariance γjt as the
probability limit of an ensemble average, i.e,

γjt = plim
1
I

I∑
i=1

(y(i)
t − µt)(y

(i)
t−j − µt−j ).

Since γjt = Cov(Yt ,Yt−j ) : R× R→ R, it is also called the
autocovariance function
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Summary statistics Stationarity Ergodicity

Exercise: autocovariance

Calculate the autocovariance of the following first-order moving
average model (MA(1)):

yt = 3 + εt + 0.5εt−1 ε ∼ IIDN (2, 1)

γj = Cov(yt , yt−j ) =Cov(3 + εt + 0.5εt−1, 3 + εt−j + 0.5εt−j−1)
=Cov(3, 3) + Cov(3, εt−j ) + Cov(3, 0.5εt−j−1)

+ Cov(εt , 3) + Cov(εt , εt−j ) + Cov(εt , 0.5εt−j−1)
+ Cov(0.5εt−1, 3) + Cov(0.5εt−1, εt−j ) + Cov(0.5εt−1, 0.5εt−j−1)

=0 + 0 + 0
+ 0 + Cov(εt , εt−j ) + 0.5Cov(εt , εt−j−1)

+ 0 + 0.5Cov(εt−1, εt−j ) + 0.52Cov(εt−1, εt−j−1)
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Summary statistics Stationarity Ergodicity

Exercise: autocovariance

Calculate the autocovariance of the following first-order moving
average model (MA(1)):

yt = 3 + εt + 0.5εt−1 ε ∼ IIDN (2, 1)

If εt is iid or serially uncorrelated ⇒ Cov(εt , εt−j ) = 0 for j 6= 0 :

j = 0 : γ0 = Var(yt) = Var(εt) + 0.52Var(εt−1) = 1.25
j = 1 : γ1 = 0.5Var(εt) = 0.5
j = 2 : γ2 = 0
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Summary statistics Stationarity Ergodicity

Summary statistics: autocorrelation

Autocorrelation or ACF:

The autocorrelation function
ρjt = corr(Yt ,Yt−j ) : R× R→ [−1, 1] is defined as

ρjt ≡
γjt√

γ0tγ0t−j
.
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Summary statistics Stationarity Ergodicity

Exercise: autocorrelation

Calculate the autocorrelation of the following first-order moving
average model (MA(1)):

yt = 3 + εt + 0.5εt−1 ε ∼ IIDN (2, 1)

We know that the autocovariance is:

j = 0 : γ0 = Var(yt) = Var(εt) + 0.52Var(εt−1) = 1.25
j = 1 : γ1 = 0.5Var(εt) = 0.5
j = 2 : γ2 = 0

Q:What is the autocorrelation?

The autocorrelation is the

autocovariance divided by γ0

j = 0 : ρ0 = γ0/γ0 = 1
j = 1 : ρ1 = γ1/γ0 = 0.4
j = 2 : ρ2 = 0
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Summary statistics Stationarity Ergodicity

Exercise: autocorrelation in R

First we generate the process:

yt = 3 + εt + 0.5εt−1 ε ∼ IIDN (2, 1)

> epsilon <- rnorm(101, mean = 2, sd = 1)

> y.1 <- 3 + epsilon[2:101] + 0.5 * epsilon[1:100]

> y.1.acf <- acf(y.1)

> plot(y.1.acf)

> y.2 <- arima.sim(n = 100, list(ma = 0.5)) + 3

> y.2.acf <- acf(y.2)

The acf plot in the next page:
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Summary statistics Stationarity Ergodicity

Exercise: autocorrelation in R
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Summary statistics Stationarity Ergodicity

Question

Find the correlation of the AR(2) process:

yt = 0.3 + 0.1yt−1 − 0.5yt−2 + εt

Generate the process and plot its autocorrelation in R.
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Summary statistics Stationarity Ergodicity

Weak stationarity

Stationarity:

Definition (weak stationarity): If

E (Yt) = µ ∀t ,
E (Yt−k − µ)(Yt−s − µ) = γ|s−k | ∀t

then Yt is said to be covariance-stationary also called
weakly stationary)
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Summary statistics Stationarity Ergodicity

Weakly stationarity

A stochastic process whose mean function is constant and whose
covariance function γ|t−u| depends of |t − u| only and not
separately of t and/or u is termed weakly stationary or wide sense
stationary or second-order stationary or covariance stationary.

In other words, its first and second moments are
time–invariant.

A time series generated by a (weakly) stationary process will
fluctuate around the mean value, and does not have a trend.

The variance are also time–invariant

The covariances do not depend on time but only on the
distance between the two observations

All this implies that the first and second moments are finite,
i.e. they exist.

26 / 46



Summary statistics Stationarity Ergodicity

Weakly Stationarity

Do you think the following time series are generated by a weakly
stationary process?
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Summary statistics Stationarity Ergodicity

Weakly Stationarity

and these?
300

500
700

900 German Gross National Product

quarterly
1979 1984 1989 1994
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−0.10

0.00

Log returns S&P 500

daily
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Summary statistics Stationarity Ergodicity

Weakly Stationarity

The sample autocorrelation of series with stationary DGP dies out
quickly.

ACF of Quaterly Change in US fixed investments:

0 5 10 15 20

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Lag
29 / 46



Summary statistics Stationarity Ergodicity

Weakly Stationarity

The sample autocorrelation of series with nonstationary DGP does
not die out quickly.

ACF of Quaterly US fixed investments:
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Summary statistics Stationarity Ergodicity

Weakly Stationarity

So stationarity is rare in economic time series.

However, some transformations (like the first difference) can
help us to get stationary series.
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Summary statistics Stationarity Ergodicity

Strict stationarity

Definition (strict stationarity): The joint distribution of all
collections of (Yt ,Yt+1, ...,Yt+k ) for k > 0 do not depend (in
any way) on t .
Example: A covariance stationary Gaussian process is also
strictly stationary since it is fully characterized by the mean
and variance which by covariance stationarity are independent
of t .

This property is used in proofs but it is difficult to prove in
practice.
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Summary statistics Stationarity Ergodicity

Partial autocorrelation function

Partial Autocorrelation Function (conditional correlation) or
PACF:

This function gives the correlation between two random
variables that are j periods apart when the in-between linear
dependence (between t and t − j ) is removed.

Let Yt and Yt−j be two random variables. The PACF is then
given as

αj = ρj (Yt ,Yt−j |Yt−1, ...,Yt−j+1)

We need to define a linear projection.

33 / 46



Summary statistics Stationarity Ergodicity

Partial autocovariance function

The projection of Yt+1 onto the space spanned by
Yt ,Yt−1, . . . ,Yt−k+1 is the best linear predictor of Yt+1 given
Yt ,Yt−1, . . . ,Yt−k+1:

Y ∗t+1|t − µ =
k−1∑
i=0

αi+1(Yt−i − µ)

where αi minimises E [(Yt+1 −
∑k−1

i=0 αi+1Yt−i)2]

The partial covariance between Yt and Yt−j with j > 0 is αj the
correlation between Yt and Yt−j conditioning out all variables in
between.
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Summary statistics Stationarity Ergodicity

Partial autocorrelation function

Find the partial autocovariance between Yt and Yt−2 for the
process:

Yt = 0.5Yt−1 + εt εT ∼ N (0, 1)

The linear projection of Yt onto Yt−1 is 0.5Yt−1

The linear projection of Yt−2 onto Yt−1 is E(Yt−1E(Yt−2))
E(Y 2

t−1)

α2 = Cov(Yt −Y ∗t |t−1,Yt−2 −Y ∗t−2|t−1) = 0
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Summary statistics Stationarity Ergodicity

Partial autocorrelation function

Find the partial autocorrelation between Yt and Yt−2, i.e. γ2:[
α1

α2

]
=
[

γ0 γ1

γ1, γ0

]−1 [
γ1

γ2

]
In our example γ0 = 4

3 , γ1 = 2
3 , γ2 = 1

3
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Summary statistics Stationarity Ergodicity

Partial autocorrelation function

> Gamma = matrix(c(4/3, 2/3, 2/3, 4/3),
ncol = 2, byrow = T)
> gamma = c(2/3, 1/3)
> solve(Gamma) %*% gamma

[,1]
[1,] 0.5
[2,] 0.0
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Summary statistics Stationarity Ergodicity

PACF

ACF of German long term interest rates
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Summary statistics Stationarity Ergodicity

Ergodicity

A time series is a single realisation of the generating
stochastic process.

Can the sample mean of this realisation gives us any
information about the ensemble mean at each point in time?

What about the variance?

The answer to these two questions is yes if the process is
ergodic
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Summary statistics Stationarity Ergodicity

Ergodicity

The introduction of the ensemble averages serves to
understand the concepts of ergodicity.

Consider the sequence {y(1)
t }Tt=1. From this sequence we

could compute the time average and time covariance:

y =
1
T

T∑
t=1

y(1)
t ,

γj =
1

T − j

T∑
t=j+1

(y(1)
t − µ)(y(1)

t−j − µ)

Does y converge to E (Yt)? Does γj converges to γj ? Is the
process ergodic?
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Summary statistics Stationarity Ergodicity

Ergodicity

A covariance stationary process is said to be ergodic for the mean if

y →P E (Yt) as T →∞.

Comment:

If
∞∑
j=0

|γj | <∞,

for a covariance stationary process Yt , then it will be ergodic in
the mean. This condition (sufficient) is referred to as ”absolute
summability of the autocovariances”. Proven in Chapter 7 of
Hamilton.
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Summary statistics Stationarity Ergodicity

Ergodicity

A covariance stationary process is said to be ergodic for the second
moment if

γj →P γj , ∀j .

Comment:

If Yt is a stationary Gaussian process, absolute summability of the
covariances is sufficient to ensure ergodicity for all the moments.
Proven in Chapter 7 of Hamilton.
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Summary statistics Stationarity Ergodicity

Example: A stationary process that is ergodic in mean

AR(1) yt = 0.1 + 0.2yt−1 + εt εt ∼ N (0, 1)
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Summary statistics Stationarity Ergodicity

Example: A stationary process that is ergodic in mean

AR(1) yt = 0.1 + 0.2yt−1 + εt εt ∼ N (0, 1)

µt = E (yt) =0.1 + 0.2E (yt−1) + E (εt)
(1− 0.2)µt =0.1

µt = µ =0.1/0.8 = 0.125

y =
1
T

T∑
t=1

yt = 0.1 +
0.2
T

T∑
t=1

yt−1 +
1
T

T∑
t=1

εt

y → µ as T →∞
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Summary statistics Stationarity Ergodicity

Ergodicity

If {Yt} is a stationary iid process, for example a stationary
Gaussian process, then it is ergodic.

The constant process is also ergodic.

Processes that are strictly stationary and whose autocorrelation
converges sufficiently fast are ergodic in mean

Do we find ergodicity in reality? It is not sure!

Some people uses certain transformations to obtain ergodicity
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Summary statistics Stationarity Ergodicity

Example: A stationary process that is not ergodic in mean

Y (i)
t = µ(i) + εt εt ∼ IIDN (0, 1) µ(i) ∼ N (0, λ2)

E (Y (i)
t ) =E (µ(i)) + E (εt) = 0

γ0t =E (µ(i) + εt)2 = λ2 + σ2

γjt =E (µ(i) + εt)E (µ(i) + εt−j ) = λ2 for j 6= 0

Y (i)
t =

1
T

T∑
t=1

Y (i)
t = µ

(i)
t +

1
T

T∑
t=1

εt →T→∞ µ(i)
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