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Introduction

In order to make use of the maximum likelihood method of
parameter estimation, one has to make distributional assumptions
about {Yt} or the errors {εt} in the model

Yt = E(Yt |Ft−1) + εt

where Ft−1 is the past information (the information one is
conditioning on).

The idea behind the maximum likelihood estimation is to find the
value of the parameter vector that is the most likely one, given the
observations.
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Example: Linear regression, xt fixed

Yi = xiβ + εt , εt ∼ IID (0, σ2), i = 1, ...,N .

The likelihood function is the joint density of the observations Yi ,
i = 1, ...,N :

fY (y1, ..., yN ;β,σ2) =
N∏

i=1

fi(yi ;β,σ2). (1)

The most likely value of (β,σ2), where y1, ..., yN are fixed, is the
one that maximizes (1).

This value also maximizes log fY (y1, ..., yN ;β,σ2) since the
logarithmic transformation is a monotonic one.
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Example: Linear regression, xt fixed

Thus equation (1) is equivalent to (2):

L(β, σ2) = log fY (y1, ..., yN ;β,σ2) =
N∑

i=1

log fi(yi ;β,σ2) (2)

Popular assumption: {εt} ∼ IIDN (0, σ2):

L(β, σ2) = −N
2

log 2π − N
2

log σ2 − 1
2σ2

N∑
i=1

(yi − xiβ)2.

The log-likelihood is maximized by first maximizing the function
with respect to β and then, given the estimated value of β, with
respect to σ2.
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Example: Linear regression, xt fixed

Maximizing (1) or (2) with respect to β is equivalent to minimizing

N∑
i=1

(yi − xiβ)2

with respect to β.

Minimization yields

β̂ = (
N∑

i=1

xixi)
−1

N∑
i=1

xiyi .

which equals the least squares estimator of β.
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Example: Linear regression, xt fixed

Then, the first-order condition

∂

∂σ2

N∑
i=1

log fi(yi ;β,σ2) = − N
2σ2

+
∑N

i=1(yi − xi β̂)2

2σ4
= 0.

Solving for σ2 gives the maximum likelihood estimator

σ̂2 =
1
N

N∑
i=1

(yi − xi β̂)2.

Consequently, can estimate β first, then σ2.
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Maximum likelihood of a dependent process

When we have a stochastic process such that Yt and Yt−j are
dependent for at least one j 6= 0,

fY (y1, ..., yT ; θ) 6=
T∏

t=1

fj (yj ; θ) (3)

where fY (y1, ..., yT ; θ) is the joint density of Y1, ...,YT , and θ is
the parameter vector.

Q: Can we get an expression of the joint density?
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Maximum likelihood for any distribution

If the shocks εt ∼ N (0, σ2) but they are dependent, then we
can use the multivariate normal density function to calculate
the log–likelihood function.

If the shocks have any other type of density, the best way to
find the log–likelihood function is to factorise the joint density
function into the conditional density function multiply by the
marginal density function of the first variable

fX ,Y (x , y) = fY |X (y |x )fX (x ).
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Maximum likelihood for any distribution

Factorize fY(y1, ..., yT ; θ), assuming that {Yt} is strictly
stationary and depends of the previous p lags:

First step:

fY(y1, ..., yT ; θ) =fYT |YT−1...,Y1
(yT−1, ..., y1; θ)

· fY1,...,YT−1(y1, ..., yT−1; θ)

Second step:

fY(y1, ..., yT ; θ) =fYT |YT−1...,Y1
(yT−1, ..., y1; θ)

· fYT−1|YT−2...,Y1
(yT−2, ..., y1; θ)

· fY1,...,YT−2
(y1, ..., yT−2; θ)
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Maximum likelihood for any distribution

Continue p times:

fY(y1, ..., yT ; θ) ={
T∏

t=p+1

fYt |Yt−1...,Y1
(yt |yt−1, ..., y1; θ)}

· fY1,...,Yp (y1, . . . , yp ; θ)

Taking logs:

L(θ) =
T∑

t=p+1

log(fYt |Yt−1...,Y1
(yt |yt−1, ..., y1; θ))

+ log(fY1,...,Yp (y1, . . . , yp ; θ))

Q: Does it look similar to (2)?
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Exact maximum likelihood for AR(1) with Gaussian errors

Consider the AR(1) process

Yt = c + φYt−1 + εt , εt ∼ IIDN(0, σ2), t = 1, ...,T .

Assuming |φ| < 1, we have the unconditional moments

E(Yt) =
c

1− φ
, Var(Yt) =

σ2

1− φ2

and the conditional moments

E(Yt |Yt−1 =yt−1) = c + φyt−1

Var(Yt |Yt−1 = yt−1) =E(Yt − c − φyt−1)2 = E(ε2t ) = σ2
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Exact maximum likelihood for AR(1) with Gaussian errors

Thus the conditional density

fYT |YT−1...,Y1
(yt |yt−1, ..., y1; θ) =

1√
2πσ2

exp
{
−(yt − c − φyt−1)2

2σ2

}
,

for t = 2, ...,T .

The unconditional density

fY1(y1; θ) =

√
1− φ2

2πσ2
exp

{
−

(y1 − c
1−φ)2(1− φ2)

2σ2

}
. (4)
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Exact maximum likelihood for AR(1) with Gaussian errors

Putting the pieces together, the log-likelihood of the stationary
AR(1) model becomes

L(θ) = −T
2

log(2πσ2) +
1
2

log(1− φ2) (5)

−
(y1 − c

1−φ)2(1− φ2)

2σ2
− 1

2σ2

T∑
t=2

(yt − c − φyt−1)2

(6)

Q: How would you find the estimators of θ = (c, φ, σ2)

A: It requires numerical methods
Q: Can we avoid that?
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Conditional likelihood for a Gaussian AR(1)

If the density (4) of Y1 is excluded, one obtains the conditional
log-likelihood

log fY (y1, ..., yT ; θ) = −T
2

log(2πσ2)− 1
2σ2

T∑
t=2

(yt − c − φyt−1)2.

(7)
Estimating θ from the equation (7) above is the same than
estimating it using least squares, i.e. minimising

T∑
t=2

(yt − c − φyt−1)2 (8)

with respect to c and φ. and then after σ2.
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Conditional likelihood for a Gaussian AR(1)

Writting Xt = [1, yt−1], minimisation of (8) yields[
ĉ
φ̂

]
= (X ′tXt)−1(X ′tYt)

=

(
T∑

t=2

[
1

yt−1

] [
1 yt−1

])−1( T∑
t=2

[
1

yt−1

]
yt

)

=
1

(T − 1)
∑

y2
t−1 − (

∑
yt−1)2

×
[ ∑

y2
t−1 −

∑
yt−1

−
∑

yt−1 T − 1

] [ ∑
yt∑

ytyt−1

]
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Conditional likelihood for a Gaussian AR(1)

ĉ =
(
∑

y2
t−1)(

∑
yt)− (

∑
ytyt−1)(

∑
yt−1)

(T − 1)
∑

y2
t−1 − (

∑
yt−1)2

≈y
∑

yt−1(yt−1 − yt)∑
y2
t−1 − 1

T−1

∑
yt−1)2

and

φ̂ =

∑
ytyt−1 − 1

T−1(
∑

yt−1)(
∑

yt)∑
y2
t−1 − 1

T−1(
∑

yt−1)2
≈
∑

(yt − y)(yt−1 − y)∑
(yt−1 − y)2

.

where

y =
1

T − 1

∑
yt−1.
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Conditional likelihood for a Gaussian AR(1)

σ̂ =
1

T − 1

T∑
t=2

{yt − ĉ − φ̂yt−1}2

These OLS estimators are consitent if the process is ergodic for the
second moments.
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Conditional likelihood for a Gaussian AR(1)

Thus, exact maximum likelihood estimation of φ requires
numerical optimisation

Conditional maximum likelihood estimation yields an
analytical solution.

Q: Would it be better just to use the conditional log-likelihood
because it gives an analytical solution to the maximisation problem
instead of the exact log-likelihood? Asymptotically they must give
the same answer.

A: In small samples (short time series), the exact log-likelihood
gives more accurate answers and never allows |φ̂| ≥ 1, due to the
terms 1

2 log(1− φ2) and −(2σ2)−1(y1 − c
1−φ)2(1− φ2) in (6).
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Maximum likelihood estimation of non-Gaussian time
series

When {Y1, ...,YT} is not multivariate normal, the log-likelihood
function (7) is not the correct one.

Nevertheless, if one estimates the parameters from the
conditional log-likelihood, this does not matter in the sense
that the estimates are the same.

This is due to the fact that maximising the conditional
log-likelihood, which is equivalent to minimising

T∑
t=p+1

(yt − c −
p∑

j=1

φj yt−j )2

does not depend on distributional assumptions (a
least-squares estimation problem).
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Maximum likelihood estimation of non-Gaussian time
series

However, estimator σ̂2 depends on the functional form of the
log-likelihood function

Statistical inference, therefore, is affected by the fact that the
log-likelihood function is not the correct one.

Basically the standard errors cannot be trusted.
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Likelihood function of a Gaussian MA(1)

Consider the MA(1) process

Yt = µ+ εt + θεt−1, εt ∼ IIDN(0, σ2), t = 1, ...,T .

Note that
E{Yt |εt−1} = µ+ θεt−1.

Let θ = (µ, θ, σ2) be the parameter vector.

Then, the conditional density function

fYt |εt−1
(yt |εt−1; θ) =

1√
2πσ2

exp
{
−(yt − µ− θεt−1)2

2σ2

}
Q: How does this expression look like?
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Likelihood function of a Gaussian MA(1)

Assume, that ε0 = 0. Then

Y1 = µ+ ε1 ⇒ Y1 ∼ N (µ, σ2) ε1 = Y1 − µ

fY2|ε1,ε0=0(y2|y1, ε0; θ) =
1√

2πσ2
exp

{
−(y2 − µ− θε1)2

2σ2

}
Note: Y2 = µ+ ε2 + θε1 ⇒ ε2 = Y2 − µ− θε1
Then,

fY2|ε1,ε0=0(y2|Ft−1) =
1√

2πσ2
exp

{
− ε22

2σ2

}
Try:

fY3|Y2,Y1,ε0=0(y2|y1, ε0; θ)?
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Likelihood function of a Gaussian MA(1)

and so on...
εt = Yt − µ− θεt−1

fYt |Yt−1,...,Y1,ε0(yt |yt−1, . . . , y1, ε0 = 0; θ) = fYt |εt−1
(yt |εt−1; θ)

=
1√

2πσ2
exp

{
− ε2t

2σ2

}
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Likelihood function of a Gaussian MA(1)

The exact likelihood function conditioned to ε0 = 0 is:

fYT ,...,Y1|ε0(yT , . . . , y1|ε0) =

=

{
T∏

t=2

fYt |Yt−1,...,Y2,ε0=0(yT |...)

}
× fY1|ε0=0(y1|ε0)

The conditional log likelihood function only has the left term:

L(θ) = −T
2

log(2π)− T
2

log(σ2)−
T∑

t=1

− ε2t
2σ2

(9)

Q: Does it look easy to solve?
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Conditional maximum likelihood estimation of a Gaussian
MA(1)

Remember that εt = yt − µ− θεt−1

This means that maximising (9) is a nonlinear optimisation
problem (no analytical solution)

Q: Does this numerical optimisation have always a solution?
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CMLE of a Gaussian MA(1)

The solution requires that the MA(1) process is invertible.
Consider

εt = yt − µ− θ(yt−1 − µ− θεt−2)
= yt − µ− θ(yt−1 − µ) + θ2(yt−2 − µ− θεt−3)
= . . .

=
t−1∑
j=0

(−θ)j (yt−j − µ) + (−θ)tε0.

The sequence {(−θ)j (yt−j − µ)} converges only if |θ| < 1.

What if the estimate θ̂ > 1?

Discard it and start the numerical optimisation with 1/θ̂ as starting
point for the numerical search.
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CMLE of a Gaussian MA(1)

What starting point θ̃0 = (µ̂, θ̂) should we used for the optimiser?

µ̂ = y .
θ̂, solution of

ρ̂ = θ̂/(1 + θ̂2)

where

ρ̂ =
∑

(yt − y)(yt−1 − y)∑
(yt − y)2

.
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Exact likelihood function of a MA(1)

Consider the prediction error decomposition of the covariance
matrix of the MA(1) process

Ω = E(y−µ)(y−µ)′ = σ2


1 + θ2 θ 0 ... 0 0
θ 1 + θ2 θ ... 0 0
0 θ 1 + θ2 ... 0 0

...
0 0 0 θ 1 + θ2


where

y = (y1, ..., yT )′, µ = µ1, 1 = (1, ..., 1)′ is a T × 1 vector.

The prediction error decomposition of the covariance matrix

Ω = ADA′

where
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Exact likelihood function of a MA(1)

A =


1 0 0 ... 0 0
θ

1+θ2
1 0 ... 0 0

0 θ(1+θ2)
1+θ2+θ4

1 ... 0 0
...

0 0 0 θ(1+θ2+θ4+...+θ2(T−2))

1+θ2+θ4+...+θ2(T−1) 1


and

D = σ2


1 + θ2 0 0 ... 0

0 1+θ2+θ4

1+θ2
0 ... 0

0 0 1+θ2+θ4+θ6

1+θ2+θ4
... 0

...

0 0 0 1+θ2+θ4+...+θ2T

1+θ2+θ4+...+θ2(T−1)

 .
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Exact likelihood function of a MA(1)

The likelihood

fY(y,θ) = (2π)−T/2|Ω|−
1
2 exp

{
−1

2
(y − µ)′Ω−1(y − µ)

}
= (2π)−T/2|D|−

1
2 exp

{
−1

2
(y − µ)′(ADA′)−1(y − µ)

}
(10)

since |A| = 1 (A is lower triangular with ones on the main
diagonal).
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Exact likelihood function of a MA(1)

Furthermore, can write

fY(y; θ) = (2π)−T/2|D|−
1
2 exp{−1

2
ỹ′D−1ỹ}

where ỹ = A−1(y − µ) (and, consequently, Aỹ = y − µ).
The first row of ỹ

ỹ1 = y1 − µ

generally,

ỹt = yt − µ−
θ(1 + θ2 + θ4 + ...+ θ2(t−2))

1 + θ2 + θ4 + ...+ θ2(t−1)
ỹt−1. (11)
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Exact likelihood function of a MA(1)

Matrix D = diag(d11, ..., dTT ) with dtt > 0, t = 1, ...,T , so

|D| =
T∏

t=1

dtt and |D|−1 =
T∏

t=1

d−1
tt .

The likelihood (10) has the form

fY(y; θ) = (2π)−T/2(
T∏

t=1

d
− 1

2
tt ) exp{−1

2

T∑
t=1

(ỹ2
t /dtt)}

and the exact log-likelihood becomes

LT (θ) = log fY(y,θ)

=− T
2

log(2π)− 1
2

T∑
t=1

log dtt −
1
2

T∑
t=1

ỹ2
t

dtt
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Exact likelihood function of a MA(1)

Given θ the sequence {ỹt} is calculated recursively from (11).

Whether or not θ is associated with an invertible MA(1) process
does not matter.
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Conditional likelihood function of a MA(q)

The MA(q) process

Yt = µ+ εt +
q∑

j=1

θj εt−j , εt ∼ IIDN(0, σ2), t = 1, ...,T .

Starting-values (q of them) needed for the estimation. One
alternative:

ε0 = ε−1 = ... = ε−q+1 = 0.

The conditional log-likelihood

LT (θ) = −T
2

log(2π)−T
2

log σ2− 1
2σ2

T∑
t=1

yt − µ−
q∑

j=1

θj εt−j

2

.
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Conditional likelihood function of a MA(q)

Invertibility required if this expression of the log-likelihood is
to be applied, i.e. the roots of

1 + θ1z + . . .+ θqz q = 0

are outside the unit circle.

This conditional likelihood function is a generalization of the
corresponding function for the MA(1) process and is based on
the same triangular factorization as the MA(1) likelihood
function.
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Conditional likelihood function of a ARMA(p,q)

The ARMA(p, q) process

Yt = c +
p∑

j=1

φjYt−j + εt +
q∑

j=1

θj εt−j

εt ∼ IIDN(0, σ2), t = 1, ...,T .
(12)
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Conditional likelihood function of a ARMA(p,q)

The conditional log-likelihood

LT (θ) = −T
2

log(2π)− T
2

log σ2

− 1
2σ2

T∑
t=1

yt − c −
p∑

j=1

φjYt−j −
q∑

j=1

θj εt−j


2

.

Starting values y0, y−1, ..., y−p+1 and ε0, ε−1, ..., ε−q+1 are required
for the estimation.
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Conditional likelihood function of a ARMA(p,q)

For ε, the natural starting values are
ε0 = ε−1 = ... = ε−q+1 = 0.
For y , it may be better to use yp , yp−1, ..., y1, in which case
the starting-values for ε are εp = εp−1 = ... = εp−q+1 = 0.

The exact (unconditional) likelihood may be constructed by the
triangular decomposition of the covariance matrix but is
complicated.
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Estimating ARMA(p, q) models using the
Hannan-Rissanen method

The MA component complicates the estimation of the
ARMA(p, q) model

Hannan and Rissanen (1982) have devised a two-step
estimation method with the aim of circumventing the problem
of iterative estimation.

The method can also be applied to the estimation of
parameters in pure MA models.

It works as follows:
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Estimating ARMA(p, q) models using the
Hannan-Rissanen method

1 Estimate by ordinary least squares the long autoregression

Yt = c∗ +
p∗∑
j=1

φ∗j Yt−j + ε∗t

that approximates (12) well and calculate the residuals ε̃∗t ,
t = p∗ + 1, ...,T .

2 Estimate φj , j = 1, ..., p, and θj , j = 1, ..., q , and c by
ordinary least squares from

Yt = c +
p∑

j=1

φjYt−j + εt +
q∑

j=1

θj ε̃
∗
t−j , t = p∗ + 1, ...,T .
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Estimating ARMA(p, q) models using the
Hannan-Rissanen method

The authors have proven that, assuming εt ∼ IIDN(0, σ2) and
other conditions, the estimators are consistent and asymptotically
normal.
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Likelihood ratio test

We want the model that fits our data best

We use a large model and obtain the estimator θ̂ with
loglikelihood function L(θ̂)
We find a nested model, less parameters and obtain the
estimator θ̃ with loglikelihood function L(θ̃)

Which model fits the data best?

2(L(θ̂)− L(θ̃)) ∼a χ
2
m

where m is the number of parameters less in the restricted model.
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Example

Assume we have a loglikelihood function for model 1:

L(θ) = 1.5θ2
1 − 2θ2

2

First order maximization:

∆L(θ) = (3θ1,−4θ2)′ = (0, 0)′

The maximum occurs for θ̂ = (0, 0)′ ⇒ L(θ̂) = 0
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Example

Our hypothesis is that there is another model with only parameter
θ1 such that H0 : θ2 = θ1 + 1 whose loglikelihood function is:

L(θ1) = 1.5θ1 − 4(1 + θ1)2

∆L(θ1) = −7θ1 − 4 = 0

The maximum occures for θ̃ = (−4/7, 3/7)′ ⇒ L(θ̃) = −6/7

48 / 55



Maximum likelihood estimation Maximum likelihood estimation of non-Gaussian time series MLE for a Gaussian MA(p) process MLE for a Gaussian MA(q) process MLE for a Gaussian ARMA(p, q) process

Example

Likelihood ration test of two models:

2(0 + 6/7) = 12/7 = 1.71

> pchisq(1.71, df = 1, lower.tail = F)

[1] 0.1909854

We cannot reject the null hypothesis at 5% significance level and
therefore the smaller model provides a better fit.
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Exercise

Q: Which is the best model?
> ar4.mle = arima(mymodel, order = c(4, 0, 0))

> ar2.mle = arima(mymodel, order = c(2, 0, 0))

> ar3.mle = arima(mymodel, order = c(3, 0, 0))

> pchisq(2 * (ar4.mle$loglik - ar3.mle$loglik), df = 1, lower.tail = F)

[1] 0.3622567

> pchisq(2 * (ar3.mle$loglik - ar2.mle$loglik), df = 1, lower.tail = F)

[1] 5.746692e-57

> pchisq(2 * (ar4.mle$loglik - ar2.mle$loglik), df = 1, lower.tail = F)

[1] 3.788507e-57
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Variance covariance matrix

The variance-covariance matrix of θ̂ may be estimated by:[
− ∂2L
∂θ∂θ′

|θ=θ̂

]−1

In the example [
−3 0
0 4

]−1

=
[
−0.33 0

0 0.25

]
Because the MLE is asymptotically normal, then we can construct
the confidence interval of θ2

0± 1.96
√

0.25
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Akaike information criteria (AIC)

AIC can be used to compared two models fit. These do not need
to be nested. In this sense it is more general than the LR test.
AIC of model i is:

AICi = −2Li + 2ki

Li is the loglikelihood of model i and ki is the number of
parameters to estimate by model i .

The AIC penalises for overparametrization

The best fit that of the model with the smallest AIC

Q: Find the AIC of the models in the previous exercise
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Answer

> ar2.mle$aic

[1] 3139.083

> ar3.mle$aic

[1] 2888.078

> ar4.mle$aic

[1] 2889.248
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Bayesian information criteria (BIC)

BIC works similarly to the AIC but penalises overparametrisation
even more.
BIC of model i is:

BICi = −2Li + ki log(ki)

Li is the loglikelihood of model i and ki is the number of
parameters to estimate by model i .

The BIC penalises for overparametrization

The best fit that of the model with the smallest BIC

Q: Find the BIC of the models in the previous exercise
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Answer

> -2 * ar2.mle$loglik + 4 * log(4)

[1] 3136.628

> -2 * ar3.mle$loglik + 5 * log(5)

[1] 2886.125

> -2 * ar4.mle$loglik + 6 * log(6)

[1] 2887.999
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