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We discussed that a univarite ARMA process can be written:

φ(L)yt = c + θ(L)εt εt ∼ IID(0, σ2)

if the roots of 1− φ(z ) = 0 are outside the inner circle ⇒ the
process yt is stationary and,

it can be expressed as a MA(∞) process:

yt =φ(L)−1c + φ−1(L)θ(L)εt

=µ+ εt + ψ1εt−1 + ψ2εt−2 + . . .

=µ+ ψ(L)εt

Wold representation

3 / 41



Introduction

Introduction

yt = µ+ ψ(L)εt

ψ(L) =
∑∞

j=0 ψjL
j where ψ0 = 1

µ is the unconditional expectation and it is a constant

The forecast y∗t+s|t converges to µ when s →∞
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Quarterly USA Gross National Product
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Q: Do you think this series is stationary?
Do you think there is a trend? exp(δt), δt , δt + γt2?
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Deterministic time trend

Two approaches to explain these trends:

1 A trend stationary process where we assume that the
unconditional mean is a linear function of time µt = α+ δt .

yt = α+ δt + ψ(L)εt

If we substract the trend from the model, then we have a
stationary ARMA(p,q) process.
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Unit root

2 A unit root process ,

yt = δ + yt−1 + ψ(L)εt ⇒ yt − yt−1 = δ + ψ(L)εt

the roots of 1− φ(z ) = 0: one on the unit circle and the rest
outside.

Then, φ(L) = φ(L)∗(1− L) where φ∗(z ) = 0 has all p − 1
roots outside the unit circle

If we take first differences, then we have a stationary
ARMA(p-1, q) process.

The classical example:

yt = yt−1 + δ + εt Random walk with drift δ
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Plot trend stationary vs unit root

> set.seed(20)

> y = arima.sim(n=100, model=list(ar=c(0.3))) + 0.3 + 0.2*(1:100)

> #Try this command below

> #y2 = arima.sim (n = 100, model=list(ar=c(1)))

> y2<-numeric(100)

> for (i in 2:100)

+ y2[i] = y2[i-1] + rnorm(1)
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Plot trend stationary vs unit root

0 20 40 60 80 100

0
1

0
2

0

0 20 40 60 80 100

−
5

0
5

1
0

Index

9 / 41



Introduction

Plot trend stationary vs unit root
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Difference stationary

A unit root process is a difference stationary process because
we obtain a stationary process after first differences

In fact, it is an ARIMA(p, 1, q)

We also say that yt ∼ I(1) meaning that yt is integrated of
order 1

For example, take the process

∆yt = ψ(L)εt = ut

where ut is stationary.

By substitution, we can write

yt = y0 +

T∑
j=1

uj

so yt is the (integrated) sum of T stationary innovations

We say ut ∼ I(0)
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Why linear time trend processes?
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Introduction

Why linear time trend processes?

From the picture, it seems that we have an exponential
growth of the GNP.

Instead of using yt=GNP, we are going to use log(yt), then
we will have a proportional growth.

Because we assume yt = eδt ⇒ log(yt) = δt

So we will be modelling

log(yt) = α+ δt + ψ(L)εt
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Why unit root processes?

We have decided to take logs of the data
Why would we model it by:

log(yt) = δ + log(yt−1) + ψ(L)εt

Then, if the process has an unit root

(1− L) log(yt) = log(yt)− log(yt−1) = log

(
yt
yt−1

)
= log

(
yt − yt−1 + yt−1

yt−1

)
= log

(
yt − yt−1

yt−1
+ 1

)
≈yt − yt−1

yt−1

Then, the rate of growth of the series is a stationary
stochastic process.
In practise, we tend to multiply log(yt) by 100. For example,
(1− L)(100 log(yt)) = 1, then yt is 1% higher than yt−1
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Example: unit root
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Comparison of trend-stationary and unit root processes

The comparison is done in terms of:

1 forecast of the series,

2 variance of the forecast error,

3 dynamic multipliers (persistence of the innovations), and

4 transformations needed to achieve stationarity.
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Comparison of forecast

The forecast of a trend-stationary process:

y∗T+s|T = α+ δ(T + s) + ψsεT + ψs+1εT−1 + . . .

As the forecast horizon s grows larger, the forecast converges
in mean square to the time trend

E (y∗T+s|T − α− δ(T + s))2 = σ2
∞∑
i=s

ψ2
i →s→∞ 0

Example: if yt is an MA(q), then ψq+1, ψq+2, . . . = 0. Then
the forecast for s > q ⇒ y∗T+s|T = α+ δ(T + s)
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Comparison of forecast

We can write yT+s as

yT+s =(yT+s − yT+s−1) + (yT+s−1 − yT+s−2) + . . .+ (yT+1 − yT ) + yT

=∆yT+s + ∆yT+s−1 + . . .+ ∆yT+1 + yT

In addition, (∆yt is stationary )

∆y∗T+s|T ≡E ((yT+s − yT+s−1)|εT , εT−1, . . .)

=δ + ψsεT + ψs+1εT−1 + . . .

Putting both together

y∗T+s|T =(δ +

∞∑
i=s

ψiεT+s−i) + (δ +

∞∑
i=s−1

ψiεT+s+1−i)

+ . . .+ (δ +

∞∑
i=1

ψiεT+1−i) + yT

=sδ + yT +

s∑
i=1

ψiεT +

s+1∑
i=2

ψiεt−1 + . . .
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Examples: forecast of unit roots

For example, the random walk with drift is an unit root proccess:

yt = δ + yt−1 + εt ψ0 = 1, ψi = 0 i > 0

Its forecast:
y∗T+s|T = sδ + yT

It is expected to grow at the constant rate δ from the value at
period T
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Examples: forecast of unit roots

An ARMA (0,1,1)

yt = δ + yt−1 + εt + θεt−1

Its forecast:
y∗T+s|T = sδ + yT + θεT

It is expected to grow at the constant rate δ from the base value
yT + θεT

The forecast an ARMA (0, 1, q)

y∗T+s|T = sδ + yT +

min(s,q)∑
i=1

θiεT + . . .
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Comparison of forecast

Conclusion:

δ plays a similar role for the forecast of a trend stationary
process and a unit root

Basically, both forecasts converge to a linear function of the
forecast horison s with slope δ

However, for the trend stationary process the intercept is the
same regardless of the value of yT

While the intercept of a unit root forecast depends on the last
value yT
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Comparison of forecast errors

For a trend stationary process:

The forecast error

yT+s − y∗T+s|T = εT+s + ψ1εT+s−1 + . . .+ ψs−1εT+1

The Mean Square Error (MSE) of this forecast

E [yT+s − y∗T+s|T ]2 = (1 + ψ2
1 + . . .+ ψ2

s−1)σ2

The MSE increases with the horizon s:

lim
s→∞

E [yT+s − y∗T+s|T ]2 = (1 + ψ2
1 + . . .+ ψ2

s−1 + . . .)σ2

but it converges to a point because the process ψ(L)εt is
stationary and the lim of the MSE is the unconditional
variance of this process
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Comparison of forecast errors

For a unit root process:

The forecast error

yT+s−y∗T+s|T = εT+s+(1+ψ1)εT+s−1+(1+ψ1+ψ2)εT+s−2 . . .+(1+

s−1∑
i=1

ψi )εT+1

The Mean Square Error (MSE) of this forecast

E [yT+s − y∗T+s|T ]2 = (1 + (1 + ψ1)2 + . . .+ (1 +

s−1∑
i=1

ψi)
2)σ2

The MSE increases with the horizon s but in this case it won’t
converge to any fixed value but to a linear function of s
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Example: forecast error of unit root

In ARIMA(0, 1,1)

E [yT+s − y∗T+s|T ]2 = {1 + (s − 1)(1 + θ)2}σ2
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Comparison of forecast errors

Conclusions:

The MSE of the forecast of trend stationary process reaches a
finite bound

However, for unit roots, it grows linearly with the horizon.
Therefore, the standard deviation of the forecast error grows
with

√
s

This means that the confident intervals of the forecast
converge to a fix number in the trend stationary process but
they continue growing for the unit root process

25 / 41



Introduction

Comparison of dynamic multipliers

The persistence of innovations is different from trend stationary
and unit root processes.
Q: What is the effect on yt+s if εt were to increase by one unit and
the rest of the ε unaffected?

∂yt+s

∂εt

For trend stationary proceses, the effect wears off:

lim
s→∞

∂yt+s

∂εt
= lim

s→∞
ψs = 0

For unit root processes, the effect is permanent

lim
s→∞

∂yt+s

∂εt
= lim

s→∞
(1 + ψ1 + . . .+ ψs−1 + ψs) = ψ(1)
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Example of unit root dynamic multiplier

Use the yt = 100× log of US GNP and estimate an ARIMA(4,1,0)

> gnp.unitroot<-arima(100*gnpln, order=c(4,1,0))

> psi= round(coefficients(gnp.unitroot),3)

> psi

ar1 ar2 ar3 ar4

0.585 0.274 -0.083 0.117

ψ(1) =
1

φ(1)
=

1

1− 0.585− 0.274− 0.083− 0.117
= 9.346

The permanent effect of a one unit change in εt on the level of
GNP is estimated to be around 9%
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Transformations to achieve stationarity

The transformation needed to achieve stationarity is also different
in trend stationary and unit root processes.

For a trend stationary process, we have to substract the
trend. The remaining process is stationary

For a unit root process, we need to take first differences
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Transformations to achieve stationarity

Plot the first difference of the log US GNP
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Where does the nonstationarity come from?

Does nonstationarity comes from a time trend or a unit root?

For example, we know that the US GNP is nonstationary:

If it comes from a unit root, the economic recessions will have
permanent consequents for the level of future GNP
If it comes from a time trend, the effects will be temporary
downturns with the lost output eventually made up during the
recovery

Some authors have argue that answering whether a
nonstationary process has a unit root cannot be answered on
the basis of a finite sample. Q: why is this?

30 / 41



Introduction

Where does the nonstationarity come from?

Let say we have the true model with a unit root:

yt = yt−1 + εt (1)

There is a stationary model (false model):

yt = φyt−1 + ε |φ| < 1 but very close to 1 (2)

Q: How do we differenciate between these two processes from our
data set?
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Where does the nonstationarity come from?

The s-period-head forecast of the unit root process (1)

y∗T+s|T = yT MSE (s) = E (y∗T+s|T − yT )2 = sσ2

The corresponding forecast of the stationary process (2)

y∗T+s|T = φsyT MSE (s) = (1 + φ2 + φ4 + . . .+ φ2(s−1))σ2

If φ is close to 1, all formula are similar ⇒ It is impossible to
differentiate one forecast from the other.
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Where does the nonstationarity come from?

For any unit root process and a given T , there exists a
stationary process that will be impossible to distinguish from
the nonstationary process

Conversely, for every stationary process and a given T , there
exists a unit root process that will be impossible to distinguish
from the stationary process.

However, we can ask: Does innovations have a significant effect on
the level of the series over a specified finite horizon?
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Where does the nonstationarity come from?

For a fixed horizon, for example s = 3, there exists a sample
size T (half a century observations from WWII) such that we
can meaningfully inquire whether ∂yT+s/∂εT is close to zero.

We do not know whether the data was generated by (1) or (2)
but we can measure the persistence of the series

For example, we can assume that the proces follows an AR(1)
process and test the hypothesis H0 : φ = 1

Of course the test would have a low power to distinguish
between φ = 0.99999 and φ = 1

We can test H0 : Is {yt} a AR(1) process with an unit root?
but we cannot test H0 : Is {yt} a unit root process?
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Where does the nonstationarity come from?

Q: Are there any other sources of nonstationarity?

A: YES

Fractionally integrated processes

Processes with occasional, discrete shifts in the time trend
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Fractional integration

An integrated process of order d : I(d) is represented by

(1− L)dyt = ψ(L)εt

with
∑
|ψj | <∞.

We usually assume that d = 1 (unit root) or at the most
d = 2.

But can 0 < d < 1 be any rational number? For example
d = 0.3 or d = 0.7? What does it mean?

It means that the process has long memory.

If d < 1/2 ⇒ stationary process with long memory

If d ≥ 1/2 ⇒ nonstationary process with long memory

These could be estimated with large-order ARMA processes.
Insted, we take fractional differences first to use smaller order
(law of parsimony)
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Fractional integration

If a process is I(0.7):

(1− L)0.7yt = ψ(L)εt

then 0.7= 1-0.3.

So we can get a new process as the first difference of yt :
rt = (1− L)yt and

(1− L)−0.3rt = ψ(L)εt

where d = −0.3 < 1/2.

Long memory can arise from aggregation of other processes
(Granger, 1980). That could be the reason why it is found in the
absolute returns of indexes such as the S&P 500.
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Fractional integration
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Occasional breaks in trends

The unit root means that events with permanent effect on yt
are occurring all the time.

Perron (1989) and Rappoport and Reichlin (1989) argue that
it makes more sense to believe that this permanent effect
events only occur rarely

They propose:

yt =

{
α1 + δt + εt for t < T0

α2 + δt + εt for t ≥ T0
(3)

This series would appear to exhibit unit root nonstationarity
on the basis of an unit root test.
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Occasional breaks in trends

Anothe way of writting (3):

∆yt = ξt + δ + εt − εt−1 ξt =

{
0 t 6= T0

α2 − α1 t = T0
(4)

If we view ξt as a random variable

ξt =

{
0 with probability 1− p
α2 − α1 with probability p

where p is quite small. Then, (4) can be written as:
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Occasional breaks in trends

Lam (1990) assume that the US real GNP had a trend which
slope was modelled with a Markov chain.

yt =nt + zt

nt =nt−1 + α0 + α1St St is 0 or 1 with prob P

P =

(
p 1− p
q 1− q

)
where Pij = P(St |St−1)

zt =φ1zt−1 + φ2zt−2 + φ3zt−3 + εt

According to his study, events that permanently changed the
level of GNP coincided with the recessions of 1957, 1973 and
1980.
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