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What do you think?

What do we call volatility?

1 The process unconditional variance

2 The process conditional variance

What does large volatility mean?

What is volatility clustering?

Can we observe volatility?

Should we take it into account then?
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Why Do We Care About Volatility?

1 Many derivative securities depend explicitly on volatility

Example: Black-Scholes call option price:

CBS
t (σt) =S0Φ(d1)−Kr−rT Φ(x − σt

√
T )

d1 =
ln(S0/K ) + (r + σ2

t /2)
σ
√

T
S0 = current stock price

T = time to maturity

r = risk free interest rate

σt =
√

Var(rt |Ft)
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Why Do We Care About Volatility?

Note: derivation of Black-Scholes formula assumes constant
volatility!
However, Black-Scholes implied volatility is time-varying

σimplied
t : C observed

t − CBS
t (σimplied

t ) = 0

If Black-Scholes assumptions were correct then

σimplied
t = σ̄ = constant

Note: σimplied
t is an observable time series of volatility estimateds

based on a model for option prices.
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Why Do We Care About Volatility?

2 Risk management measures such as value-at-risk (VaR) and
expected shortfall (ES) depend explicitly on volatility

Let F denote the distribution of dollar losses on a portfolio of
assets. Let rt denote the daily continuously compounded return on
the portfolio and let W0 denote the initial value of the portfolio.
Then the daily dollar return is

W0 exp(rt)

By convention, the loss distribution F is the distribution of

Lt = −(W0 exp(rt)−W0) = −W0(exp(rt)− 1) = −W0rt

where rt = exp(rt)− 1 is the simple return.
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Why Do We Care About Volatility?

Value-at-Risk (VaR). For 0.95 ≤ q > 1, say, VaRq is the qth
quantile of the distribution F

VaRq = F−1(q)

where F−1 is the inverse of F .

Expected Shortfall (ES). ESq is the expected loss size, given that
VaRq is exceeded:

ESq = E [L|L > VaRq ]

Note: ESq is related to VaRq via

ESq = VaRq + E [L−VaRq |L > VaRq ]
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Why Do We Care About Volatility?

Example: VaR and ES for normal distribution: L ∼ N (µ, σ2)

VaR:

VaRq =µ+ σzq
zq =q · 100% quantile for N (0, 1)

ES:

ESq =µ+ σ
φ(z )

1− Φ(z )
= µ+ σ

φ(zq)
1− q

z =(VaRq − µ)/σ
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Why Do We Care About Volatility?

3 Portfolio allocation in a Markowitz mean-variance framework
depends explicitly on volatility (also covariance/correlation)

Let rt ∼ N (µ, σ2) be an n × 1 vector of simple monthly returns,
and let w be an n × 1 vector of portfolio weights that sum to one.
Let Rp,t = w ′rt denote the simple return on the portfolio. The
Markowitz mean-variance efficient portfolio w with target expected
return µ0

p solves

min
w

var(Rp,t) = w ′Σw s.t. w ′µ = µ0
p and w ′1 = 1

where

Σ =


σ2

1 σ12 . . . σ1n

σ12 σ2
2 . . . σ2n

...
. . .

...
σ1n σ2n . . . σ2

n


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Why Do We Care About Volatility?

4 Modeling the volatility of a time series can improve the
efficiency in parameter estimation (e.g. feasible GLS) and the
accuracy in interval foresting (i.e, provide correct standard
error bands for forecasts)
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Empirical Regularities of Asset Returns

1 Thick tails

Excess kurtosis decreases with aggregation

2 Volatility clustering.

Large changes followed by large changes; small changes
followed by small changes

3 Leverage effects

changes in prices often negatively correlated with changes in
volatility

4 Non trading periods

Volatility is smaller over periods when markets are closed than
when they are open
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Empirical Regularities of Asset Returns

5 Forecastable events

Forecastable releases of information are associated with high ex
ante volatility

6 Volatility and serial correlation

Inverse relationship between volatility and serial correlation of
stock indices

7 Volatility co-movements

Evidence of common factors to explain volatility in multiple
series
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Empirical Regularities of Asset Returns

(Log) prices are nonstationary and show dynamic properties in
line with processes that are integrated of order one.

Therefore, we focus our analysis on (log) price returns.

Changes of compounded return are usually not autocorrelated

Daily price variations (high frequency) exhibit:

positive autocorrelation
periods of higher and smaller price variations alternate
(empirical volatilities tend to cluster)
So although prices are hardly predictable, the variance of the
forecast error in time dependent and can be eastimated by
means of observed past variations
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Engle’s ARCH(m) Model

The ARCH(m) model for rt = ln Pt − ln Pt−1 (compounded
returns) is:

rt =µt + εt , εt |Ft−1 ∼ IID(0, σt
2)

σ2
t =a0 + a1ε

2
t−1 + . . .+ amε

2
t−m , a0 > 0, ai ≥ 0

εt =ztσt zt ∼ IID(0, 1)

Large past shocks {ε2t−i}mi=1 imply a large conditional variance
σ2

t

As a consequence, the shocks εt are large too

This means that large shocks tend to be followed by large
shocks (volatility clustering)
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Engle’s ARCH(m) Model

Remarks:

In practice, it is often assumed that zt follows a standard
normal or a standarised t-Student.

Some authors denote the conditional variance by ht , and
therefore εT =

√
htzt
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Engle’s ARCH(p) Model

The conditional mean and variance of rt

µt = E (rt |Ft−1)

σ2
t = E [(rt − µt)2|Ft−1] = E (ε2t |Ft−1)
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Properties of ARCH errors

1 Conditional moments of shocks εt

E [εt |Ft−1] =E [ztσt |Ft−1] = σtE [zt |Ft−1] = 0

var(εt |Ft−1) =E [ε2t |Ft−1] = σ2
t E [z 2

t |Ft−1] = σ2
t

E [εmt |Ft−1] =0 for m odd

E [εtεt−j ] = 0 for j = 1, 2, . . .
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Properties of ARCH Errors

2 The error εt is stationary with mean zero and constant
unconditional variance

E [εt ] =E [E [ztσt |Ft−1]]
=E [σtE [zt |Ft−1]] = 0

var(εt) =E [ε2t ] = E [E [z 2
t σ

2
t |Ft−1]]

=E [σ2
t E [z 2

t |Ft−1]] = E [σ2
t ]
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Properties of ARCH Errors

E [σ2
t ] =E [a0 + a(L)ε2t ]

=a0 + a1E [ε2t−1] + . . .+ apE [ε2t−p ]

=a0 + a1E [σ2
t ] + . . .+ apE [σ2

t−p ]

Assuming stationarity (E (σ2
t ) = E (σ2

t−1) = σ̄2)

E [σ2
t ] = σ̄2 =

a0

1− a1 − . . .− ap
=

a0

a(1)

Since the variance is positive then a0 > 0 and the polynomial
a(1) > 0
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Properties of ARCH Errors

3 εt is leptokurtic (under normality assumption)

E [ε4t ] =E [σ4
t E [z 4

t |Ft−1]] = E [σ4
t ]3

≥(E [σ2
t ])23 = (E [ε2t ])23 by Jensen’s inequality

⇒ E [ε4t ]
(E [ε2t ])2

> 3

The excess kurtosis is positive and the tail distribution of εt is
heavier than the normal distribution

kurt(εt) > 3 = kurt(normal)

This means that the Gaussian ARCH model produces more
outliers than the Gaussian white noise.
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Properties of ARCH Errors

4 σ2
t is a serially correlated random variable

σ2
t =a0 + a(L)ε2t ,

E [σ2
t ] =

a0

a(1)
= σ̄2

Using a0 = 1− a(L)σ̄2:

σ2
t − σ̄2 = a(L)(ε2t − σ̄2)

5 ε2t has a stationary AR(p) representation.

σ2
t + ε2t =a0 + a(L)ε2t + ε2t

⇒ε2t = a0 + a(L)ε2t + (ε2t − σ2
t )

where (ε2t − σ2
t ) = vt is a conditionally heteroskedastic MDS ,

i.e E (vt |Ft−1) = 0
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Properties of ARCH Errors

6 ε2t exhibits em volatility mean reversion.

Example: Consider ARCH(1) with 0 < a < 1

σ2
t =a0 + aε2t−1 = (1− a)σ̄2 + aε2t−1

⇓
(ε2t − σ̄2) =a(ε2t−1 − σ̄2) + vt

⇓
E [ε2t |Ft−1]− σ̄2 =ak [E (ε2t−k )− σ̄2]→ 0 as k →∞
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Building a volatility model

Building a volatility model for asset return series consists of four
steps:

1 Specify the mean equation by fitting an ARMA model for the
return series.

Note that the residuals should not have any autocorrelation

2 Use residuals to test for ARCH effects

3 Specify a volatility model if ARCH effects are statistically
significant, and perform a joint estimation of the mean and
volatilty equations

4 Check the fitted model and refine if necessary
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Testing for ARCH effects

Let εt = rt − µt be the residuals of the mean equation.

Q: Do the residuals square follow an AR(m) model?

ε2t = a0 + a1ε
2
t−1 + . . .+ amε

2
t−m + νt

This is written into a test:

H0 : a1 = . . . = am = 0 vs. H1 : at least one coef is nonzero
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Testing for ARCH effects

Two tests for conditional heteroskedasticiy are available:

1 Apply the Ljung-Box statistics SLB to ε2T .

2 The Lagrange multiplier test.

SSR0 =
T∑

t=m+1

(ε2t − ω̄)2 ω̄ =
1
T

∑
t=1

ε2t

SSR1 =
T∑

t=m+1

ν̂2
t ν̂2 is the least-squares residual

F =
(SSR0 − SSR1)/m

SSR1/(T − 2m − 1)
∼ χ2

m

The null hypothesis is rejected if F > χ2
m(α)
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Testing for ARCH effects

We consider the monthly log stock returns of Intel Corporation
from 1973–2008 (Intel.txt)

The series does not have a significant serial correlation so we can
directly test for ARCH effects

> intel = read.table(file="../data/Intel.txt",header = T)

> #We convert simple returns in log returns

> r_t= log(intel[,2]+1)

> Box.test(r_t, lag=12, type="Ljung")

Box-Ljung test

data: r_t
X-squared = 18.2635, df = 12, p-value = 0.1079

> #The test results in no autocorrelation of the returns
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Testing for ARCH effects

> #Remove the mean of the returns and test for ARCH effects

> epsilon_t= r_t - mean(r_t)

> Box.test(epsilon_t^2, lag=12, type="Ljung")

Box-Ljung test

data: epsilon_t^2
X-squared = 89.8509, df = 12, p-value = 5.274e-14

There is no function to calculate the LM test in R for ARCH
effects but you can program it easily.
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Weakness of ARCH models

1 The model assume that positive and negative effects have the
same effects on volatility

2 It is restrictive in the size of parameters ai to ensure the
fourth moment is positive

3 It does not give indication of the causes of heteroskedasticity

4 It is likely to overpredict the volatility because it responds very
slowly to large isolated shocks of the returns
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Specifying an ARCH model

Once we have found that there are ARCH effects, which is the
order of the ARCH model?
The model looks like

σ2
t = a0 + a1ε

2
t−1 + . . .+ ε2t−m

For a given sample ε2t is an unbiased estimate of σ2
t

We expect that ε2t is linearly related to ε2t−1 . . .

A single ε2t is not an efficiente estimate of σ2
t , but it can be an

approximation (proxy)
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Specifying an ARCH model

Define νt = ε2t − σ2
t :

ε2t = a0 + a1ε
2
t−1 + . . .+ ε2t−m + νt

which is an AR(m) model for ε2t .

So we can estimate the order by plotting the PACF of ε2t

The only problem is the νt is not an iid series, so the
least-squares estimates of the prior model are consistent but
inefficient.
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Estimation of an ARCH model

Depending on the distribution of εt , we can obtain several
likelihood function for the sample {rt}t=1

Exact likelihood:

fε(εt , . . . , εT ; θ) =
T∏

t=m+1

fεt |Ft−1
(εt |εt−1, . . . ε1; θ) fε1,...,εm (ε1, . . . , εm ; θ)︸ ︷︷ ︸

Might be difficult to find

? =
T∏

t=m+1

1√
2πσ2

t

exp
(
− ε2t

2σ2
t

)

·
(det(Ω−1

m )1/2

(2π)m/2
exp

(
−1

2
ε̃′Ω−1

m ε̃

)
? –zt follows a standarised normal distribution
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Estimation of an ARCH model

Conditional likelihood:

fε(εt , . . . , εT ; θ) =
T∏

t=m+1

fεt |Ft−1
(εt |εt−1, . . . ε1; θ)

? =
T∏

t=m+1

1√
2πσ2

t

exp
(
− ε2t

2σ2
t

)

?? =
T∏

t=m+1

Γ(ν + 1)/2
Γ(ν/2)

√
(ν − 2)π

1
σt

[
1 +

ε2t
(ν − 2)σ2

t

]−(ν+1)/2

?? – zt follows a starndarised Student-t distribution with ν degrees
of freedom.
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Estimation of an ARCH model

> library(tseries)

> #Fit an ARCH(1), trace=F to supress numerical output of gradient

> intel.arch<-garch(r_t, order=c(0,1), grad="numerical", trace=F)

> coef(intel.arch)

a0 a1

0.01144064 0.36708117

> confint(intel.arch)

2.5 % 97.5 %

a0 0.009388698 0.01349258

a1 0.209865558 0.52429678
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Estimation of an ARCH model

A more complete R function:

> library(fGarch)

> intel.arch2<-garchFit(r_t~garch(1,0), trace=F)

> coef(intel.arch2)

mu omega alpha1
-0.001550561 0.146527491 0.370867049

> intel.arch2.2<-garchFit(r_t~garch(1,0), trace=F,

+ include.mean=F)

> coef(intel.arch2.2)

omega alpha1
0.1464835 0.3713363

34 / 38



Model checking

After estimating the model obtain the residuals

ε̂t =
(rt − µ̂t)

σ̂t

Ljung-Box test of ε̂2t independence

ε̂t should have heavier tails than the standard normal
(QQ-plot)

Try the summary(intel.arch2) in your computer ⇒ the
Ljung-Box test of the squared residuals have a large p-value
(independence)

Try plot(intel.arch2) and choose 13 to see the QQ-plot
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Predict and ARCH model

> #1 to 5-step-ahead predictions

> predict(intel.arch2, 5)

meanForecast meanError standardDeviation
1 -0.001550561 0.5005455 0.5005455
2 -0.001550561 0.4893329 0.4893329
3 -0.001550561 0.4851086 0.4851086
4 -0.001550561 0.4835326 0.4835326
5 -0.001550561 0.4829468 0.4829468

36 / 38



t-innovations

For comparison we also fit an ARCH(1) model with zt a
standarised Student-t distribution

> options(width=60)

> intel.t<-garchFit(r_t~garch(1,0), cond.dist="std",

+ trace=F)

> round(coef(intel.t),4)

mu omega alpha1 shape
0.0113 0.1548 0.5491 3.4435

With a skew Student-t distribution

> intel.st<-garchFit(r_t~garch(1,0), cond.dist="sstd",

+ trace=F)

> round(coef(intel.st),4)

mu omega alpha1 skew shape
0.0038 0.1536 0.5303 0.9603 3.5016
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t-innovations

Fit an ARMA(1,0) + GARCH(1,1)

> intel.arma<-garchFit(r_t~arma(1,0)+garch(1,1), trace=F)

> coef(intel.arma)

mu ar1 omega alpha1
-0.006097039 0.051377920 0.011189123 0.157402965

beta1
0.799951837
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