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White noise

yt = εt εt ∼ IID(µ, σ2)

It is weakly stationary.

The mean and variance do not depend on time

If the distribution of the epsilons is normal, then it is called a
Gaussian white noise.

A Gaussian white noise is strictly stationary because a
multivariate normal distribution is completely define with the
mean and variance-covariance matrix.

The epsilons are uncorrelated γh = cov(εt , εt+h) = 0 for h 6= 0
This process is completely unpredictable.
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Simulating and estimating White noise in R

Simulate samples of size 200 of the following processes:

yt = εt εt ∼ IIDN (µ, σ2)

yt = εt εt ∼ IIDχ2
9(µ, σ

2)

yt = εt εt ∼ IID(µ, σ2)

y1=rnorm(200, 20, sd=4.3)
y2=rchisq(200,df=9 )
plot(y1)
plot(y2)
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Linear time series

A times series yt is said to be linear if it can be written as an
MA(∞) model:

yt = µ+
∞∑
i=0

ψiεt−i

µ is the mean of yt

ψ0 = 1
{εt} is a white noise. It represents the new information in
time t (innovation, shock)
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Linear time series

The dynamics of linear time series are govern by the
parameters ψi

If yt is weakly stationary then we can obtain its mean,
variance and covariance.

ARMA processes are the most popular of linear time series

ARMA processes are stationary.
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Stationary MA processes

MA(1) – file: proof1.pdf
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Simulating and estimating MA in R

Given the MA(1) proccess

yt = 20 + 0.7εt−1 + εt εIIDN (0, 1)

What is its mean? and the intercept?

Simulate the proccess using arima.sim and estimate it using
function arima. What is the mean? and the intercept?
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Simulating and estimating MA in R

Given the MA(1) proccess

yt = 20 + 0.7εt−1 + εt εIIDN (0, 1)

The mean is 20 and the intercept is 20.

> y= arima.sim(1000, model=list(ma= 0.7)) + 20
> mean(y)
[1] 19.92846
> arima(y, order=c(0,0,1))
Coefficients:

ma1 intercept
0.6651 19.9278

s.e. 0.0249 0.0511

sigma^2 estimated as 0.9434: log likelihood = -1390.09, aic = 2786.18
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The qth order Moving Average Process (MA(q))

Yt is constructed from a weighted sum of the q most recent
realizations of the error term.

Definition (MA(q)):

An MA(q) process Yt is defined as

Yt = µ+ εt +
q∑

j=1

θj εt−j = µ+ θ(L)εt ,

where εt is a zero mean i .i .d . process and (µ, θ1, ..., θq) ∈ Rq+1, is
a vector of parameters.
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The qth order Moving Average Process (MA(q))

The mean of Yt :
E(Yt) = µ.

The variance of Yt :

γ0 ≡ var(Yt) = (1 + θ2
1 + ...+ θ2

q)var(εt).

The autocovariance function of Yt for j = 1, 2, ..., q :

γj ≡ cov(Yt ,Yt−j ) = (θj + θj+1θ1 + θj+2θ2 + ...+ θqθq−j ) var(εt).

Notice that for j > q , cov(Yt ,Yt−j ) = 0.
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The Infinite-Order Moving Average Process (MA(∞)):

According to the definition above the MA(∞) process can be
written as

Yt = µ+
∞∑
j=0

ψj εt−j , ψ0 = 1.

Question: Under which circumstances will the MA(∞) process
be covariance stationary and ergodic?

Answer: When
∑∞

j=0 |ψj | <∞ (for a proof, see notes from
class).

Note: Covariance stationarity only requires that the sequence
{ψ2

j }∞j=0 is square summable (absolute summability implies
square summability).
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First order autorregressive process (AR(1))

Definition:

The first order (Gaussian) autoregressive process (AR(1)) is
defined as

Yt = c + φYt−1 + εt ,

εt ∼ N (0, σ2).

Proposition:

Let Yt be a first order autoregressive process. If |φ| < 1, Yt will be
covariance stationary and ergodic in the mean.
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Stationary AR processes

AR(1) – file: proof1.pdf
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Simulating and estimating AR in R

Given the AR(1) proccess

yt = 20 + 0.7yt−1 + εt εtIIDN (0, 1)

What is its mean? and the intercept?

Simulate a sample of size 1000 of this proccess using arima.sim
and estimate it using function arima.

What is the mean? and the intercept?
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Simulating and estimating AR in R

yt = 20 + 0.7yt−1 + εt εIIDN (0, 1)

The mean is 20/(0.3)=66.67, the intercept is 20

> set.seed(20)

> y= arima.sim (1000, model=list(ar=0.7))+66.67

> mean(y)

[1] 66.6577

> ar1= arima(y, order=c(1,0,0)) #note include.mean=T

> ar1

Coefficients:

ar1 intercept

0.6820 66.6614

s.e. 0.0231 0.1007

sigma^2 estimated as 1.03: log likelihood = -1433.81, aic = 2873.62
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Simulating and estimating AR in R

yt = 20 + 0.7yt−1 + εt εIIDN (0, 1)

The mean is 20/(0.3)=66.67, the intercept is 20

> ar2=ar(y, method="mle")

> ar2$x.mean

[1] 66.6577

> ar$coef[2]*(1-ar$coef[1])

[1] 21.20

17 / 47



MA process AR processes ARMA(p, q)

Simulating and estimating AR in R

The arima function says that the model is:

yt = 66.66 + 0.68yt−1 + εt

However where it is written intercept, in reality it should say mean.
The intercept c = µ(1− φ). So, in reality the model is:

yt = 21.20 + 0.68yt−1 + εT
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Simulating and estimating AR in R

> y2=arima.sim(1000, model=list(ar=0.7),
innov =rnorm(1000, 20, 1))
> mean(y2)
[1] 66.49881
> 20/(1-0.7)
[1] 66.66667
> ar3=arima(y2, order=c(1,0,0))
> ar3

Coefficients:
ar1 intercept

0.9961 63.5754
s.e. 0.0054 9.1600

sigma^2 estimated as 1.616: log likelihood = -1661.5, aic = 3328.99

> 63.5754*(1-0.9961)
[1] 0.2479441 19 / 47



MA process AR processes ARMA(p, q)

Simulating and estimating AR in R

The arima function says that the model is:

yt = 0.25 + 0.996yt−1 + εt

which is a bad prediction
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Simulating and estimating AR in R

> ar4=ar(y2)
> ar4

Coefficients:
1

0.6992

Order selected 1 sigma^2 estimated as 3.187
> ar4$x.mean
[1] 66.668
> ar4$x.mean*(1-ar4$ar)
[1] 20.05435

yt = 20.05 + 0.699yt−1 + εt
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Simulating and estimating AR in R

> ar5=ar(y2, method="mle")
> ar5

Call:
ar(x = y2, method = "mle")

Coefficients:
1 2 3 4

0.9163 0.0196 0.0381 0.0240

Order selected 4 sigma^2 estimated as 1.49
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First order autorregressive process (AR(1))

Proof:

Rewrite the AR(1) process as

(1− φL)Yt = c + εt , |φ| < 1

and notice that provided |φ| < 1 the inverse of (1− φL) exists and
is given as

(1− φL)−1 = lim
q→∞

q∑
j=0

φjLj , |φ| < 1.

Consequently,

Yt = lim
q→∞

q∑
j=0

φj c + lim
q→∞

q∑
j=0

φjLj εt , |φ| < 1. (1)

Yt =
c

1− φ
+
∞∑
j=0

φj εt−j , |φ| < 1.
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First order autorregressive process (AR(1))

Proof (continued):
Hence Yt also have an MA(∞) representation whenever |φ| < 1
with ψj = φj for j = 0, 1, 2, ....

Recall that a sufficient condition for the MA(∞) process to be
covariance stationary and ergodic in mean is that∑∞

j=0 |ψj | =
∑∞

j=0 |φ|j = 1
1−|φ| <∞ which holds whenever

|φ| < 1.
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Moments of the AR(1) process (|φ| < 1):

Mean (unconditional):

E(Yt) = E

(
c

1− φ

)
+ E

 ∞∑
j=0

φj εt−j

 =
c

1− φ

Variance (unconditional):

γ0 = lim
q→∞

E
(
(εt + φεt−1 + ...+ φqεt−q)2

)
= lim

q→∞

q∑
j=0

φ2jσ2

=
σ2

1− φ2
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Moments of the AR(1) process (|φ| < 1):

Autocovariance (unconditional):

γj = lim
q→∞

E ((εt + φεt−1 + ...+ φqεt−q)(εt−j + φεt−1−j + ...+ φqεt−q−j ))

= lim
q→∞

(φj + φj+2 + φj+4 + ...+ φ2q−j )σ2

= lim
q→∞

φj (1 + φ2 + φ4 + ...+ φ2(q−j ))σ2

=
φjσ2

1− φ2

Autocorrelation (unconditional)

ρj =
γj

γ0
= φj
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The AR(p) process and its moments:

Definition:

The (Gaussian) pth order autoregressive process Yt is defined as

Yt = c + φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt (2)

φ(L)Yt = c + εt

for εt ∼ N (0, σ2).
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The AR(p) process and its moments:

Important:

The AR(p) process has a state space representation given as


Yt

Yt−1

...
Yt−p+2

Yt−p+1

 =


φ1 φ2 ... φp−1 φp

1 0 ... 0 0
0 1 ... 0 0
... ... ... ... ...
0 0 ... 1 0




Yt−1

Yt−2

...
Yt−p+1

Yt−p

+


εt
0
...
0
0



Yt = FYt−1 + εt
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The AR(p) process and its moments:

From the state space representation we can find (as the
solution to a ”first” order difference equation)

Yt+j = Fj+1Yt−1 +
j∑

i=0

Fj−iεt+i

If all the eigenvalues of F are less than one in modulus the
”system” is stable (how is this related to covariance
stationarity and ergodicity?)
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The AR(p) process and its moments:

The process can be also be written as:

φ(L)yt = εt

Provided that the roots of the lag polynomial φ(z ) lies outside the
unit-circle, we can write ψ(L) = φ(L)−1 and obtain the following
covariance stationary MA(∞) representation

Yt = ψ(L)c + ψ(L)εt

= ψ(1)c +
∞∑
j=0

ψj εt−j . (3)

For a proof of (3), see notes from class.
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The AR(p) process and its moments:

Mean (unconditional):

E(Yt) = ψ(1)c =
c

1− φ1 − ...− φp
= µ.

Variance and Autocovariances (unconditional):

The AR(p) process can be written as:

Yt −µ = φ1 (Yt−1 − µ)+φ2 (Yt−2 − µ)+ ...+φp (Yt−p − µ)+ εt ,

and

γ0 = E(Yt − µ)2

= E(φ1 (Yt − µ) (Yt−1 − µ) + φ2 (Yt − µ) (Yt−2 − µ) +
...+ φp (Yt − µ) (Yt−p − µ) + (Yt − µ) εt)

= φ1γ1 + φ2γ2 + ...+ φpγp + σ2.
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The AR(p) process and its moments:

In general

γj = E(Yt − µ)(Yt−j − µ)
= E(φ1 (Yt−1 − µ) (Yt−j − µ) + φ2 (Yt−2 − µ) (Yt−j − µ) +

...+ φp (Yt−p − µ) (Yt−j − µ) + (Yt−j − µ) εt)
= φ1γj−1 + φ2γj−2 + ...+ φpγj−p .
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The AR(p) process and its moments:

Comments:

In order to find γ0, ..., γp , as functions of φ1, ..., φp and σ2 we
must solve a system of (p + 1) equations.

Numerically the (p, 1) vector (γ0, γ1, ..., γp−1)′ can be found
as the first p elements of the first column of the (p2, p2)
matrix

σ2
(
Ip2 − (F⊗ F)

)−1
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The AR(p) process and its moments

Autocorrelation (unconditional):

ρj =
γj

γ0
, j = 0, ..., p

ρj =
{

1 j = 0
φ1ρj−1 + φ2ρj−2 + ...+ φpρj−p j = 1, ..., p

(4)

Comments:

The system of equations given by (4) are the so-called
Yule-Walker equations.

The autocovariances and autocorrelations follow the same pth
order difference equation as does the process itself.
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Stationary ARMA processes

ARMA(1,1) – file: proof1.pdf
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The Autorregressive Mean Average Process (ARMA(p, q))

Definition:

The process Yt , t = 1, 2, ...,T is said to have a Gaussian
ARMA(p,q) representation if

φ(L)Yt = c + θ(L)εt , εt ∼ N (0, σ2),
φ(L) = 1− φ1L− φ2L2 − ...− φpLp ,

θ(L) = 1 + θ1L + θ2L2 + ...+ θqLq .
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ARMA(p,q)

Infinite MA representation of the ARMA(p,q) process:

If the roots of φ(z ) all lie outside the unit circle, φ(L)−1 exists and
consequently we can write

Yt = φ(L)−1c + φ(L)−1θ(L)εt
= φ(L)−1c + ψ(L)εt ,

where
∑∞

j=0 |ψj | <∞, and ψ0 = 1.
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ARMA(p,q)

Important result:

Stationarity of an ARMA(p,q) process depends only on the
autoregressive parameters, i.e., φ(L), and NOT on the moving
average parameters, i.e., θ(L).
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ARMA(p,q)

Autocovariance function:

Writing the ARMA(p,q) process in deviations from the mean gives

Yt − µ = φ1(Yt−1 − µ) + ...+ φp(Yt−p − µ) +
εt + θ1εt−1 + ...+ θqεt−q ‘

By multiplying both sides by Yt−j − µ for j > q and taking
expectations yields

γj = φ1γj−1 + φ2γj−2 + ...+ φpγj−p

since E(Yt−j − µ)εt−q = 0 for j > q . The autocovariance function
for the ARMA(p,q) process will be more complex than for the
AR(p) process for lags 1 through q . This is due to the correlation
between Yt−j and εt−q for j ≤ q (For an ARMA(1,1) case, see
notes from class).
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Invertability of the MA(q) process

We have seen how an AR(p) process can be given an infinite
order MA process representation given the roots of the lag
polynomial lie outside the unit circle. In this case we could
”invert” the lag-polynomial.

Question: Under which conditions can we ”invert” an MA(q)
process to obtain an infinite order AR representation?
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Invertability of the MA(q) process

Example:

Consider the MA(1) process

Yt − µ = (1 + θL)εt , εt ∼ IID(0, σ2)

and assume that |θ| < 1, such that (1 + θL)−1 exists. Notice, that

(1 + θL)−1 = (1− (−θ)L)−1

=
∞∑
j=0

(−θ)jLj

and consequently we can write
∞∑
j=0

(−θ)jLj (Yt − µ) = εt

(1− θL + θ2L2 − θ3L3 + .....)(Yt − µ) = εt

which is an infinite AR process.
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Invertability of the MA(q) process

If an MA(q) process can be given an infinite order AR process,
then the MA(q) process is said to be invertible.

Comment:

If θ(z )−1 exists, then Yt − µ = θ(L)εt , is an invertible MA(q)
process.

Question: What does invertability means in terms of first and
second order moments of the MA(q) process?

To answer this question we need a ”new” tool: The
Autocovariance Generating Function (gY (z )).
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Invertability of the MA(q) process

The autocovariance generating function is defined as

gY (z ) =
j=∞∑

j=−∞
γj z j

where z is a scalar.

Why useful: If two stochastic processes have identical
autocovariance generating functions, then the two processes
exhibit identical sequences of autocovariances.

Proposition:
For any invertible MA(q) representation, there exists a
non-invertible MA(q) representation with identical first and second
order moments.

Proof: Hamilton, pages 64–66
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Invertability of the MA(q) process

The implication is that the invertible or the non-invertible
MA(q) process could characterize data equally well (in terms
of the first two moments).

However, to find εt for date t associated with the invertible
MA(q), we need only to know the current and past values of
Yt . This implies that εt can be computed using real
world-data.

To find ε̃t associated with an non-invertible MA(q) we need to
know all the future values of Yt
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Invertability of the MA(q) process

Comment:

The invertible representation should ”always” be preferred.

The values of εt associated with invertible MA(q)
representation are called the Fundamental Innovation for Yt .
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Example

Ỹt = (1+2.4L+0.8L2)ε̃t , εt ∼ N (0, σ̃2) is not invertible because

> polyroot(c(1, 2.4, 0.8))

[1] -0.5-0i -2.5+0i

(1 + 2.4z + 0.8z 2) = (1− 1
(−0.5)

z )(1− 1
(−2.5)

z )

z1 = −0.5 is inside the unit circle (no invertibility)

None are in the circle (we can find an invertible process with
the same moments)

The inverse roots λ1 = 1/(−2.5) = −0.4 λ2 = 1/(−0.5) = −2

Ỹt = (1− λ1L)(1− λ2L)εt
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Example

The invertible process:

Yt =(1− (−0.4)L)(1− (−0.5)L)εt , εt ∼ N (0, σ̃2)

=(1− λ1L)(1− λ−1
2 L)εt

=(1 + 0.9L + 0.2L2)εt

for σ2 = 4σ̃2, is invertible and has the same moments than the
intial process.

Note: We only use λ2 because it is outside the unit circle.
Remark: The roots of the final polynomial are all outside the unit
circle.
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