Summary statistics Stationarity Ergodicity

Statistical properties of linear time series

(Hamilton: Chapters 3.1-3.2)
Isabel Casas
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Summary statistics Stationarity

Summary statistics, stationarity and ergodicity

@ Definitions
o Expectation, variance, covariance and autocorrelation
o Stationarity
o Ergodicity

Ergodicity



Summary statistics Stationarity Ergodicity

Summary statistics: expectation

Expectations and variances:

o Consider I sequences of the process { Y;}72

—0o0

o For example, computer 1 generates a sequence
y ={..., y&ll), y(()l), yl(l), ...}, computer 2 generates y(?) ...
computer I generates y(/)

@ Select the t-th observation from each of the I sequences.
This gives the sample (denoted I realizations of the random

variable v\")

yt(1)7 yt(2)7 ceeey yt(l)

o Let fy,(y;) denote the unconditional density of Y;. The
unconditional expectation of Y, is then given as

E(Yt):/ytht(yt)dytu ¢

3/46



Summary statistics Stationarity Ergodicity

Summary statistics: 6 different processes

AR(1) ¥ =014+02y,1+¢ e~ N(0,1)
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Summary statistics: ensemble average

Value at time ¢ = 40 of each process

Ergodicity



Summary statistics Stationarity

Summary statistics: ensemble average

The ensemble average at time t = 40

Ergodicity
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Summary statistics: expectation

@ The unconditional expectation of Y; is equal to the
probability limit of the ensemble average

I
.1 i
E(Y;) = p||mli§_1 Y,

1223
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Summary statistics

Stationarity

Ergodicity

Summary statistics: expectation

I =1000
v =014+02y,1+¢ e~ N(0,1)

pe =0.1/(1—0.2) = 0.125
t y.1 y.2 y.3 y.4 y.b y.6 ensemble_mean
5 104 -009 034 121 -1.85 0.98 0.09
10 -033 -081 0.14 025 114 022 0.12
11 -074 059 -023 -0.02 -098 0.76 0.12
12 113 054 -212 -1.05 -1.89 -0.20 0.11
13 217 035 -0.03 -091 -192 0.17 0.12
45 -044 096 071 -044 -106 -1.23 0.16

50 096 -122 -1.13 -059 0.13 -0.46

0.13
"i.

8 /46



Summary statistics Stationarity Ergodicity

Summary statistics: 6 different processes

AR(1) 2z =cos(t)+0.2z._1 +€ €~ N(0,1)




Summary statistics

Stationarity

Summary statistics: expectation

1 =1000
2z =cos(t) +0.2z;1 +€¢ €~ N(0,1)
1

Bt =53 cos(t)
t z.1 z.2 z.3 z.4 z.5 z.6 mean
5 122 010 053 140 -166 117 0.28
10 -1.27 -1.75 -0.80 -0.69 0.20 -0.72 -0.82
11 -0.83 050 -0.32 -0.12 -1.08 0.66 0.02
12 187 129 -138 -031 -1.14 054 0.86
13 298 116 0.78 -0.10 -1.11 097 0.92
45 -0.01 138 1.13 -0.02 -0.64 -0.80 0.59
50 1.82 -036 -0.26 027 099 041 0.99

Ergodicity
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Exercise: expectation

Calculate the unconditional expectation of the following first-order
moving average model:

MA(].) Y = 3 + €¢ + O.56t_1 € v N(2, 1)

E(y) = E(3) + E(e;) + 0.5E(e_1) =3+2+1=6

What about the expectation of:

yr =6t + € +0.5e,—1 €~ N(0,1)7
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Summary statistics: variance

@ The unconditional variance of Y;
o = B(Y: = ) = [ (o0 = 1), ) o

—P"mI Z —Mt
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Summary statistics

Stationarity

Summary statistics: variance

I = 1000
¥ =014+02y;1+¢ e~ N(0,1)
t y.1 y.2 y.3 y.4 y.5 y.6  wvar
5 104 -009 034 121 -185 098 1.12
10 -033 -0.81 0.14 025 114 022 1.00
11 -0.74 059 -0.23 -0.02 -098 0.76 1.00
12 113 054 -212 -1.05 -1.89 -0.20 1.01
13 217 035 -0.03 -091 -192 0.17 1.07
45 -044 096 071 -044 -106 -1.23 1.06
50 096 -1.22 -1.13 -059 0.13 -0.46 0.94

Ergodicity
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Summary statistics

Stationarity

Summary statistics: variance
I =1000
2z =cos(t) +0.2z;_1 +€¢ €~ N(0,1)
t z.1 z.2 z.3 z.4 z.5 z.6 var
5 1.22 0.10 0.53 1.40 -1.66 1.17 1.12
10 -1.27 -1.75 -0.80 -0.69 020 -0.72 1.00
11 -0.83 0.50 -0.32 -0.12 -1.08 0.66 1.00
12 1.87 129 -138 -0.31 -1.14 054 101
13 2.98 1.16 0.78 -0.10 -1.11 0.97 1.07
45 -0.01 138 1.13 -0.02 -0.64 -0.80 1.06
50 1.82 -036 -026 027 099 041 094

Ergodicity
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Exercise: variance

Calculate the unconditional variance of the following first-order
moving average model (MA(1)):

Yyt =3+ € +0.56,1 €~ N(2, 1)

Var(y) =Var(3) + Var(e;) + Var(0.5¢;—1)
=041+ 0.5%(1) = 1.25

What about the variance of:

Yt = 6t+6t +0.56t_1 €~ N(O, 1)7

Ergodicity
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Summary statistics: autocovariance

Autocovariances:

o Consider a particular realisation {yt(i)}o_ooo and define the
(1) _ (() (1) (i))/

vector x; s Yi—1s - Yi—j

@ We are interested in the distribution of x,@ across realizations
of 7, i.e., the joint distribution of Y3, Y;_1,..., ¥;_;, which we
denote Fthyt—ly'n:thj (ng))

@ The jth autocovariance of Y;, defined as
vit = E(Yy — pe)(Yi—j — py—j), equals (for a given realization
of 1)

= [ [ @) i )00 04,
—o0 —00
4
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Summary statistics: autocovariance

@ Again, we can think of the autocovariance v;; as the
probability limit of an ensemble average, i.e,

I
1 j -
it = plim— Z(yt(” - ut)(yt(i)j — Pi—j)-
i=1
e Since vj; = Cov(Yy, Yi—j) : R x R — R, it is also called the
autocovariance function

Ergodicity
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Exercise: autocovariance

Calculate the autocovariance of the following first-order moving
average model (MA(1)):

Y =3+ € +0.56,1 €~ IIDN(Q, 1)

v; = Cov(yy, yi—j) =Cov(3 + €; + 0.56,1,3 + €, + 0.5¢;_;_1)
=Cov(3,3) + Cov(3,€—j) + Cov(3,0.56,—;-1)
+ Cov(et, 3) + Cov(et, €4—;) + Cov(es, 0.5e4—5—1)
+ Cov(0.5€;—1,3) + Cov(0.5¢;_1, €,—;) + Cov(0.5¢
=04+0+0
+ 0+ Cov(et, €4—5) +0.5C0ov (e, €4—j—1)
+ 0+ 0.5Cov(e;—1,€1—;) + 0.52 Cov(es—1, cly—1)
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Exercise: autocovariance

Calculate the autocovariance of the following first-order moving
average model (MA(1)):

yi =3+ € +0.56,, e~ IIDN(2,1)

If € is iid or serially uncorrelated = Cov(es, €;—;) =0 for j #0 :

§=0: o= Var(y;) = Var(es) + 0.52 Var(e;_1) = 1.25
j =13 Y1 = 0.5 Var(et) =0.5
j=2: 7v=0

Ergodicity
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Summary statistics: autocorrelation

Autocorrelation or ACF:

@ The autocorrelation function
pjt = corr(Yy, Yi_j) : R x R — [—1,1] is defined as

Vit

pjit = —(——.
! v/ Yot Y0t —j

Ergodicity
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Summary statistics Stationarity Ergodicity

Exercise: autocorrelation

Calculate the autocorrelation of the following first-order moving
average model (MA(1)):

Y =3+ € +0.56,1 €~ IIDN(Q, 1)

We know that the autocovariance is:

j=0: 7 = Var(y) = Var(e;) + 0.5% Var(e;_y) = 1.25
j=1: ~ =0.5Var(e)=0.5
j=2: vm=0

Q:What is the autocorrelation?
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Exercise: autocorrelation in R

First we generate the process:

Y =3+ €+ 0561 €~ I]DN(Q, 1)

epsilon <- rnorm(101, mean = 2, sd = 1)

y.1 <= 3 + epsilon[2:101] + 0.5 * epsilon[1:100]
y.1l.acf <- acf(y.1)

plot(y.1.acf)

y.2 <- arima.sim(n = 100, list(ma = 0.5)) + 3
y.2.acf <- acf(y.2)

vV V.V Vv VvV

The acf plot in the next page:
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Exercise: autocorrelation in R

1.0

0.6

0.4

0.2
1
i

-0.2 0.0
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Summary statistics Stationarity Ergodicity

Question
Find the correlation of the AR(2) process:

Yyt =03 +0.1y—1 — 0.5y¢—2 + €

Generate the process and plot its autocorrelation in R.
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Weak stationarity

Stationarity:

o Definition (weak stationarity): If

E(Yt) = WK Vt7
E(Yieg =) (Yims — ) = Yjs—k Vi

then Y} is said to be covariance-stationary also called
weakly stationary)

Ergodicity
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Weakly stationarity

A stochastic process whose mean function is constant and whose
covariance function 7);_,| depends of [¢ — u| only and not
separately of ¢ and/or u is termed weakly stationary or wide sense
stationary or second-order stationary or covariance stationary.

@ In other words, its first and second moments are
time—invariant.

@ A time series generated by a (weakly) stationary process will
fluctuate around the mean value, and does not have a trend.

@ The variance are also time—invariant

@ The covariances do not depend on time but only on the
distance between the two observations

o All this implies that the first and second moments are finite,
i.e. they exist. 4
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Weakly Stationarity

Do you think the following time series are generated by a weakly
stationary process?

S_larage—— iy L =— Ti><ccd i c—1ac—1at_—

EN=Y=—yw ERr=y=x=3 EN=Y=%u EEr=Y=x=1 E=t=m
aQuarteriy

C=c—riaa—ar L_orc T erra liatere-—1 F=atc

= == EEr=Y=_=3 EEE=X=_=x

aQuarteris %
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Weakly Stationarity

and these?

Coeriaa—ara c=ro—= I iaticomaal Forodduact

E == ER=Y=>=x% EEr=y=x=1 EEr=x=p=1
auarteris

Lo retwuarm— = r— —Soo

==y A D 7= A D=1 A DDDDO A DD
A=l
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Weakly Stationarity

The sample autocorrelation of series with stationary DGP dies out
quickly.

ACF of Quaterly Change in US fixed investments:

e
i

0.8

0.4

0.2

-0.2 0.0
|
—
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Summary statistics

Stationarity

Weakly Stationarity

Ergodicity

The sample autocorrelation of series with nonstationary DGP does
not die out quickly.

ACF of Quaterly US fixed investments:

e
i
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Weakly Stationarity

@ So stationarity is rare in economic time series.

@ However, some transformations (like the first difference) can
help us to get stationary series.

Ergodicity
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Strict stationarity

o Definition (strict stationarity): The joint distribution of all
collections of (Y3, Yii1, ..., Yiix) for k > 0 do not depend (in
any way) on t.

@ Example: A covariance stationary Gaussian process is also
strictly stationary since it is fully characterized by the mean
and variance which by covariance stationarity are independent
of t.

@ This property is used in proofs but it is difficult to prove in
practice.
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Partial autocorrelation function

Partial Autocorrelation Function (conditional correlation) or
PACF:

@ This function gives the correlation between two random
variables that are j periods apart when the in-between linear
dependence (between ¢ and ¢ — j) is removed.

o Let Y; and Y;_; be two random variables. The PACF is then
given as
aj = pj( Yy, Yij| Vi1, ..., Yioji1)

@ We need to define a linear projection.
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Partial autocovariance function

The projection of Y, onto the space spanned by
Y., Yi—1,..., Yi_k11 is the best linear predictor of Y;,; given
Y, Yicr, oo Yipq1:

k-1
e M= Z%H(Ytﬂ' — 1)
i=0
where «; minimises E[(Yi41 — Zf;ol i1 Yi_i)?]
The partial covariance between Y; and Y;_; with j > 0 is o the

correlation between Y; and Y;_; conditioning out all variables in
between.
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Partial autocorrelation function

Find the partial autocovariance between Y; and Y;_o for the
process:

Yi=05Y_1+¢ er~N(0,1)

The linear projection of Y; onto Y;_1is 0.5Y;_4
The linear projection of Y; 5 onto Y;_ 1 is W
t—1

ag = Cov(Yy = Y, 1, Y12 — Yo, 1) =0
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Partial autocorrelation function

Find the partial autocorrelation between Y; and Y; o, i.e. ¥o:

=l
arl_[ 2w m ] [ N }
a2 71,7 72

In our example vg = %, MN=35"2=3

36

Ergodicity
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Partial autocorrelation function

> Gamma = matrix(c(4/3, 2/3, 2/3, 4/3),
ncol = 2, byrow = T)
> gamma = c(2/3, 1/3)
> solve(Gamma) %*% gamma
[,1]
(1,1 0.5
[2,] 0.0
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00 02 04 06 08 10

-02

02 04 06 08

02 00

PACF

ACF of German long term interest rates

PACF of German long term interest rate
e
L I L o

Note: Initial point

Ergodicity
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Ergodicity

@ A time series is a single realisation of the generating
stochastic process.

@ Can the sample mean of this realisation gives us any
information about the ensemble mean at each point in time?

@ What about the variance?

@ The answer to these two questions is yes if the process is
ergodic
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Ergodicity

@ The introduction of the ensemble averages serves to
understand the concepts of ergodicity.

o Consider the sequence {yt(l)};f:l. From this sequence we
could compute the time average and time covariance:

1 T
_ 1
=il
T
7, - (M = ) - )
I —y e =
t=7+1

o Does g converge to E(Y;)? Does 7, converges to ;7 Is the
process ergodic?

Ergodicity
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Ergodicity

A covariance stationary process is said to be ergodic for the mean if

y—>P E(Yy) as T — oc.

Comment:

If
o0
>l < oo,
=0

for a covariance stationary process Y7, then it will be ergodic in

the mean. This condition (sufficient) is referred to as "absolute
summability of the autocovariances”. Proven in Chapter 7 of 4o
Hamilton.
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Ergodicity

A covariance stationary process is said to be ergodic for the second
moment if

_ P .
Y, = Vi V9.
Comment:

If Y} is a stationary Gaussian process, absolute summability of the
covariances is sufficient to ensure ergodicity for all the moments.
Proven in Chapter 7 of Hamilton.
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Example: A stationary process that is ergodic in mean

AR(].) Y =014+02y—1+€ €~ N(O, 1)

sample mean:  0.08 0.13 0.11 0.05 0.1
< -
& o
o 4
N
|
¥ A
ensemble mean at t=40: 0.12

30 35 40 45 50 %.
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Example: A stationary process that is ergodic in mean

AR(].) Yt = 0.1+ O.Qyt_l + € €4~ N(O, 1)
M = E(yt) =0.1+ O2E(yt_1) + E(Gt)

(1-0.2)p; =0.1
e = p =0.1/0.8 = 0.125
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Ergodicity

If {Y;} is a stationary iid process, for example a stationary
Gaussian process, then it is ergodic.

The constant process is also ergodic.

Processes that are strictly stationary and whose autocorrelation
converges sufficiently fast are ergodic in mean

Do we find ergodicity in reality? It is not sure!

Some people uses certain transformations to obtain ergodicity
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Example: A stationary process that is not ergodic in mean
Y\ =u® 4 ¢, e ~IDN©0,1) pu ~ N(0,X%)
B(Y{") =B(u") + B(e:) = 0

Yor =E(uV 4 €)% = A2 + o2
it =B + e) B(u® + ej) = A

forj #0
<@ _ 1 ET: (4) (i 1 ET:
7 = 1) % - (4)
Yt 2 Yt =p; + 2 €t —T—oo W
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