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VAR model and cointegration

o Granger representation theorem links cointegration to ECM

@ Their test only works for one cointegrating vector and the
estimation has to be done by OLS

@ Sgren Johansen links cointegration to a VAR model

@ Johansen found a way to both test for the number of
cointegrating vectors and then estimate the VAR model using
maximum likelihood techniques
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Cointegrated VAR (CVAR)

We have the levels VAR(p) model for y; = (y1¢, Yots - - - » Ynt)-

Yi=a+Py 1+ ...+ Py, €

that can be written as a VAR(p) model on the first differences,
also called Vector Error Correction Model (VECM)

Ayt = at+&yyi-1+§ 1Ay 1+ +E, 1Ay priter € ~ 1ID(0,Q)
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Each individual variable y;; is I(1) and there are h different linear f
combination of y; that are stationary.
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Cointegrated VAR (CVAR)

@ The estimates are obtained by maximum likelihood.
@ If the innovations €; are Gaussian, then the loglikelihood of
Yi,¥Y2,...,¥T is:
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@ The aim is to find the values that maximise this function
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Cointegrated VAR (CVAR)

The Johansen’s algorithm consists of three steps to estimate the
CVAR model
Step 1 Calculate a set of auxiliary regressions

Step 2 Use the residuals of the auxiliary regressions to calculate the
sample cannonical correlation matrix. A set of eigenvalues and
their correspondent eigenvectors are calculated from these

Step 3 The eigenvectors are the cointegration relations and they can
be used to find the ML estimates
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Step 1: Calculate auxiliary regressions
First estimate the VAR(p-1) on the first differences:

Ay = 7o+ 1Ay 1 + ... + 1Ay i1 + 1

where f[i contains the OLS coefficients and 1y are the OLS
residuals

Secondly, estimate the following regressions by OLS:

Vi1 =0+ RAy;, 1+ ...+ Ry 1Ay, i1 + ¥y
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Step 2: Calculate canonical correlations
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and order then 5\1 > 5\2 >0 > j\h.
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Step 3: Calculate maximum likelihood estimates of
parameters

Let a3, a2, ...,ay be the eigenvectors associated with the
eigenvalues of (1)

a=bja; + bag + ...+ bpan
for some (by,...,by).
@ This means that each cointegration relation is a linear
combination of the eigenvectors

o But there are many of these combinations, so we first

normalise the eigenvectors so that 4; = a;/vV a;X yv a;
@ Then we have

~

A =a;,... 4y, PR



Johansen's method

Testing Null Hypothesis

Step 3: Calculate maximum likelihood estimates of

parameters

The rest of the parameter estimates are:
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Testing for h cointegrating vectors

Hy :h are the number cointegrating relations

H; :n are the number of cointegrating relations

@ We only need to perform Step 1 and Step 2 to obtain the
eigenvectors \;

@ The number of random walks are g =n — h
@ The log likelihood ratio test is

n
LRT' = —T ) log(1—A;) ~ Table B.10
i=h+1
o Different cases depending of the value of a and different
values depending of g
@ This is also called trace test
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Testing for h cointegrating vectors

Hy :h are the number cointegrating relations

Hy :h + 1 are the number of cointegrating relations

o We only need to perform Step 1 and Step 2 to obtain the
eigenvectors \;

@ The log likelihood ratio test is
LRT? = —Tlog(1 — A1) ~ Table B.11 — distribution

o Different cases depending of the value of o and different
values depending of ¢

@ This is also calle maximum eigenvalue test 4
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Example: PPP

The period 1974:Jan — 1989: Oct

> load("../data/ppp.rda")

> ppp2= ppp[313:502,]

> ppp.data <- cbind(
p=100*1og(ppp2![, "PZUNEW"] /ppp2[[1, "PZUNEW"]]),
s=-100+1og (ppp2[, "EXRITL"]/ppp2[[1, "EXRITL"]]),
pstar=100*1og(ppp2[, "PC6IT"]/ppp2[[1,"PC6IT"]])
)

y <- as.matrix(ppp.data)

+

vV o+ + +
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Example: PPP
Step 1: Estimate the auxiliary regresions (12 lags) with intercept
lags <- 12
n <- ncol(y)
#lag of the first differences
delta.y.lag <- embed(diff(y),lags)
X <- delta.y.lag[,-(1:n)]
T <- nrow(X)
#Left handside of the equation
lhs <- cbind( delta.y.lagl,1:n], y[2:(T+1),] )
#Auxiliary regressions
aux.Ilm <- Im( lhs ~ 1 + X, data=list( lhs=lhs, X=X ) )
#Get the residuals of the OLS regressions all in one command
uv <- sapply(summary(aux.lm),FUN=function(x) { x$residuals })
u <- uv[,1:n]

VVVVVVVVVVVVVYV

v <- uv[, (n+1):(2*n)]
g
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Example: PPP

Step2: Calculate the canonical correlations

> SigmaUU <- 1/T * t(u) %%} u
> SigmaVV <- 1/T * t(v) J*} v
> SigmaUV <- 1/T * t(u) %*} v
> print (SigmaUU)

Response Y1 Response Y2 Response Y3
Response Y1 0.04334278 -0.02738393 0.01155124
Response Y2 -0.02738393 4.69448944 0.01269838
Response Y3 0.01155124 0.01269838 0.16412603
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Testing Null Hypothesis

Example: PPP

Step2: Calculate the canonical correlations

> print(SigmaVV)

Response p Response s Response pstar

Response p 385.0404 -345.0220
Response s -345.0220 415.4382
Response pstar 723.0707 -659.0187

> print (SigmaUV)

723.0707
-659.0187
1364 .0548

Response p Response s Response pstar

Response Y1 -0.3239128 0.3807291
Response Y2 -0.5290025 -3.8656908
Response Y3 -1.1131057 0.9821572

-0.51689656
-0.03978276
-2.24519116
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Example: PPP

Step2: Find the eigenvalues

> eigen.results <- eigen( solve(SigmaVV) 7}, t(SigmaUV) 7*J, solve(SigmaUU) 7*} S
> lambda <- eigen.results$values

> LRT1 <- -T*sum(log(l-lambda))

> print (lambda)

[1] 0.10559814 0.03675098 0.02252293
> print (T*log(1-lambda))
[1] -19.864816 -6.664911 -4.054920

> #This the likelihood ratio
> print (LRT1)

[1] 30.58465
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Example:PPP

We can do the test to know how many cointegrating vectors are
there after these two steps.

Hy:h=0vs H :h=3

Because there is evidence of time trend and we have estimated the
regressions with trend then we are in Case 3 of Table B.10. The
number of random walks g = 3. Therefore the critical value at 5%
is 29.5.

The trace test LRT" is 38.85>29.5, then the null hypothesis of no
cointegration is rejected. Remember this result is different to the
result with Engle and Granger tests.

f
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Example:PPP

Now we test
Hy:h=1vs H :h=3

Then,

LRT' = (Mg + A3)/T = 10.72

The number of random walks is g=2, the critical value for Case 3
is 15.2. Again we reject the null hypothesis concluding there there
are 2 relationships.’

Instead if we use the maximum eigenvalue test

Hy: h=1vs H = 2 then the

LRT? = —T(log(1 — A2)) = 6.66 ~ Table B. 11
The critical value of B.11, case 3 g= 2 at 5% is 14. So then we &
keep Hj
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Example: PPP

Step2: We can use function ca.jo from package urca to do all the
above.

> options (width=50)

> library(urca)

> ca.jo.results <- ca.jo(y, type = "eigen", ecdet = "none",
+ K = 12,spec="transitory", season = NULL, dumvar = NULL)

20 /24
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Example: PPP

Weights W:
(This is the loading matrix)

p-11 s.11 pstar.1l1
p.d -0.03237772 -0.0005168081 -2.917297e-03
s.d -0.22977578 0.0144007857 6.832073e-05

pstar.d 0.05784111 0.0007968797 -6.205028e-03
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Example: PPP

Step2: We can use function ca.jo from package urca to do all the
above.

> summary(ca. jo.results)
R
# Johansen-Procedure #
#HHHA R

Test type: maximal eigenvalue statistic (lambda max) , with linear trend

Eigenvalues (lambda):
[1] 0.10559814 0.03675098 0.02252293

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r<=2| 4.05 6.50 8.18 11.65
r<=11| 6.66 12.91 14.90 19.19
r=0 | 19.86 18.90 21.07 25.75

Eigenvectors, normalised to first column:
(These are the cointegration relations)

p-11 s.11  pstar.1l1
p.11 1.00000000 1.000000 1.0000000
s.11 -0.03593089 -2.687483 -0.1338774

pstar.11 -0.55276379 -1.916302 -0.3903290

Weights W:
(This is the loading matrix)
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Example: PPP

Step 3: We tested and concluded there is only one cointegrating
vector which is obtained from the first eigenvalue &,

> ahatl <- eigen.results$vectors/[,1]

> #normalisation

> ahatl.tilde <- ahatl / sqrt( t(ahatl) 7*J SigmaVV 7*), ahatl )
> ahatl.normal <- ahatl / ahat1[1]

> print (ahat1)

[1] -0.87476014 0.03143091 0.48353573
> print (ahatl.tilde)
[1] -0.79006125 0.02838761 0.43671725
> print(ahatl.normal)

[1] 1.00000000 -0.03593089 -0.55276379 %’
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Example: PPP

> vecm.estimation= cajorls(ca.jo.results, r=1)
> #summary(vecm.estimation$rlm)
> vecm.estimation$beta

ectl
p.-11 1.00000000
s.11 -0.03593089

pstar.11 -0.55276379
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