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Box and Jenkins

Previously

An ARMA(p,q) process Yt :

φ(L)Yt = c + θ(L)εt

with φ(L) = 1−φ1L− . . .−φpLp and θ(L) = 1 + θ1L+ . . .+ θqLq

The process is stable and stationary if the roots φ(z ) = 0 are
all outside the unit circle

In this case the ARMA process can be written as a MA(∞)

The process is invertible if the roots of θ(z ) = 0 are all
outside the unit circle

In this case the ARMA process can be written as a AR(∞)
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Forecasting

Box and Jenkins modelling philosophy

Forecasting AR processes

Forecasting MA processes

Forecasting ARMA processes
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Box and Jenkins modelling philosophy

Given a data set, how do we fit the proper ARIMA (p,d,q)?

ARIMA (p,d,q) is the autoregressive integrated moving
average process:

φ∗(L) = φ(L)(1−L)dYt = c+θ(L)εt , {εt} ∼ IID(0, σ2). (1)

Box and Jenkins modelling strategy offers a coherent
data-driven way of building ARMA or ARIMA models.

Presented in Box and Jenkins (1970), it consists of three
stages (econometritians terminology):

1 Identification (Specification)
2 Estimation
3 Diagnostic checking (Evaluation)
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Box and Jenkins modelling philosophy

ARIMA(0,1,0) = random walk:

Yt = c + Yt−1 + εt ⇒ ∆Yt = c + εt

ARIMA(0, 2, 0) = ∆2Yt = c + εt

ARIMA(0, d, 0) = ∆dYt = c + εt

ARIMA(p,d,q)= φ(L)∆dYt = c + θ(L)εt

Remember that ∆d = (1− L)d

Q: How is an ARIMA(1,1,1)?
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Box and Jenkins modelling philosophy

Indentification

1 Check d in (1). If d > 0, apply the filter ∆d = (1− L)d to Yt

and model Xt = ∆dYt .
2 Identify the model for Xt , that is, determine p and q

Estimation

Estimate φ(L), θ(L) and σ2

Check the model

Apply misspecification tests to the estimated model
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Identification

Step 2 of the Identification stage relies on sample
autocorrelations and partial autocorrelations.

Time series {y1, ..., yT}, after potential differencing
{x1+d , ..., xT}.
If the partial autocorrelation function has a cut-off point at
lag p choose an AR(p) model

If the model is an MA or an ARMA, the partial
autocorrelation function does not have a cut-off point.
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Identification

Box and Jenkins specification rules:

If the autocorrelation function has a cut-off point, choose an
MA model and select q to equal the cut-off point.

If the partial autocorrelation function has a cut-off point,
choose an AR model and select p to equal the cut-off point.

If the neither function has a cut-off point, choose an ARMA
model. Caution recommended in determining p and q because
of the potential identification problem discussed in Section 3.5.

How to choose d? Consider the autocorrelation function. If
the first autocorrelation is close to unity and the
autocorrelations decay slowly, choose d = 1. (Repeat the
same considerations for the differenced series.)

More modern techniques (unit root testing) exist.
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Box and Jenkins

Identification

Plot the series

Does it have a trend? No
Is it weakly stationary? Yes

Do we model it with an AR, MA or ARMA process?

Plot the ACF and PACF
Ljung-Box test of independence

AR(p) MA(q) ARMA(p,q)

ACF geometric decay cut-off at q geometric after q
PACF cut-off at p geometric decay geometric after p

We will see later on what to do in case there is a trend in the
mean or heterokedasticity
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Model checking

Test the hypothesis that the errors are normal and
independent (in the Box and Jenkins strategy it is assumed
that {εt} ∼ IIDN(0, σ2)).
Consider any sequence {Xt}Tt=1. Want to test the hypothesis
that {Xt} ∼ iid. Have to assume that EX 4

t <∞. Let ρj =
corr(Xt ,Xt−j ). It can be shown

√
T ρ̂j

d→ Z where Z ∼ N(0, 1) (2)

when {Xt} ∼ iid, as T →∞.

Note: Notation ’
d→’ means ’converges in distribution’.
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Box and Jenkins

Model checking

The result in (2) can be used to derive the test statistic for
H0: {Xt} ∼ iid or ρ1 = 0 = . . . = ρk .

It is well known that if Zi ∼ IIDN(0, 1), i = 1, ..., k ,then Z 2
i ∼

χ2
1 and independent, and

∑k
i=1 Z 2

i ∼ χ2
k .

Thus, Box-Pierce statistics

SBP(k) = T
k∑

i=1

ρ̂2
i

d→ χ2
k

when H0 is valid. SBP(k) is the Box-Pierce statistic.

Ljung-Box statistic (with better small-sample properties than
BP):

SLB(k) = T (T − 2)
k∑

i=1

ρ̂2
i

T − i
d→ χ2

k .
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Model checking

Problem: Box-Pierce and Ljung-Box statistics are only valid
when the null hypothesis is that the original observations are
iid.

The asymptotic theory does not hold when the test is applied
to the residuals of an estimated ARMA or ARIMA model.

Remedy: A degrees of freedom correction. Let ρ̂i =
corr(ε̂t , ε̂t−i) where {ε̂t} are the residuals from an estimated
ARMA(p, q) model.

The null hypothesis is that the errors {εt} ∼ iid.

Under this null hypothesis,

SLB(k) = T (T − 2)
k∑

i=1

ρ̂2
i

T − i
d→ χ2(k − p − q)

so carrying out the test requires k > p + q .
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Identifying AR(p) in practice

The autocorrelation:

ρk = φ1ρk−1 + φ2ρk−2 + . . .+ φpρk−p

The partial autocorrelation:

αk =
{
6= 0 k ≤ p
= 0 k > p

The partial autocorrelation cuts–off at lag p.
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Box and Jenkins

Identifying AR(p) in practice

Figure: US. quarterly real GNP growth rate from 1947.II ti 1991.I
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Box and Jenkins

Identifying AR(p) in practice

Figure: PACF of US. quarterly real GNP growth rate from 1947.II ti
1991.I
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Identifying AR(p) in practice

AIC criteria:

AIC =
−2
T

ln( likelihood) +
2
T
× number of parameters

For the Gaussian AR(p), the formula reduces to:

AIC(p) = ln(σ̃2) +
2p
T
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Identifying AR(p) in practice

AIC criteria in R:

> options(width = 60)

> gnp.ar = ar(gnp, method = "mle")

> gnp.ar$aic

0 1 2 3 4
27.8466897 2.7416324 1.6032416 0.0000000 0.3027852

5 6 7 8 9
2.2426608 4.0520840 6.0254750 5.9046676 7.5718635

10 11 12
7.8953337 9.6788727 7.1975452

> gnp.ar$order

[1] 3
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Model checking

Once we have estimated the model, we must check its
adequacy.

The residuals ε̂t should behave like a white noise.

mean zero
no autocorrelation
homogeneity

The ACF and the Ljung-Box statistics of the residuals can be
used to check independence.

’

18 / 40



Box and Jenkins

The Ljung-Box statistics

H0 : ρε
0 = ρε

1 = . . . = ρε
k vs. H1 : ρε

i 6= 0 for some i ≤ k
Box-Pierce or Portmanteau test

SBP(k) = T
k∑

i=1

ρ̃2
i ∼ χ2

k−p

Ljung-Box test (higher power)

SLB(k) = T (T + 2)
k∑

i=1

ρ̃2
i

T − i
∼ χ2

k−p
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Returns of CRSP value-waited index

Example: Monthly simple resturns of CRSP value-waited index.

5 10 15 20

−
0.

10
0.

00
0.

10

Lag

P
ar

tia
l A

C
F

Series  crsp

AR(3) and AR(9)? Let us choose AR(3).
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Returns of CRSP value-waited index

> options(width = 60)

> crsp.2 <- arima(crsp, order = c(3, 0, 0))

> crsp.2

Call:
arima(x = crsp, order = c(3, 0, 0))

Coefficients:
ar1 ar2 ar3 intercept

0.1158 -0.0187 -0.1042 0.0089
s.e. 0.0315 0.0317 0.0317 0.0017

sigma^2 estimated as 0.002875: log likelihood = 1500.86, aic = -2991.73
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Returns of CRSP value-waited index

The intercept in the AR model referst to µ, so we have to find
c = (1− φ1 − φ2 − φ3)µ.

> options(width = 60)

> phi <- round(crsp.2$coef[1:3], 3)

> c <- round((1 - sum(phi)) * crsp.2$coef[4], 3)

> c

intercept
0.009

> sigma.2 <- round(crsp.2$sigma2, 3)

> sigma.2

[1] 0.003
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Returns of CRSP value-waited index

The model is

Yt = 0.009+0.116Yt−1−0.019Yt−2−0.104Yt−3+εt εt ∼ IID(0, 0.003)

The estimator of the variance of εt :

σ̃2 =

∑T
t=p+1 ε̂

2
T

T − 2p − 1
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Returns of CRSP value-waited index

Is there autocorrelation in the errors? let us plot their ACF:
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Returns of CRSP value-waited index

Let us test for autocorrelation for lags under 12.

> options(width = 60)

> test <- Box.test(crsp.2$residuals, lag = 12, type = "Ljung")

> pchisq(test$statistic, 9, lower.tail = F)

X-squared
0.05987558

The null hypothesis of no residual serial correlation is not rejected
at 5% level (p-value=0.06), but barely. Can we do better?
We noticed in the PACF that the AR(2) is not significant, let us
remove it from the model.
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Returns of CRSP value-waited index

Try to remove second coefficient:

> options(width = 60)

> crsp.3 <- arima(crsp, order = c(3, 0, 0), fixed = c(NA,

+ 0, NA, NA))

> test <- Box.test(crsp.3$residuals, lag = 12, type = "Ljung")

> pchisq(test$statistic, 10, lower.tail = F)

X-squared
0.0782661

The H0 is not rejected and the model is better because there is a
clear uncorrelated errors. We keep the model without the second
coefficient.
Note: We use 10 degrees of freedom because now we are
estimating only 2 coefficients instead of 3.
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AR(p) forecasting

Now that we found the proper AR model, let us forecast it.

Suppose that we are at time T (forecast origin)

We want to forecast the value YT+h for h ≥ 1 (forecast
horizon)

We call Y ∗
T+h the forecast of YT+h .

We define a loss function that measures the distance between
the real value and the forecasted value.

The MSE is a popular loss function, so the forecasted value
Y ∗

T+h is chosen as the value that minimises

E [(YT+h −Y ∗
T+h)2|FT ) ≤ min

g
E [(YT+h − g)2|FT ]

where FT contains information until time T .

Proof3.pdf
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Example: AR(p)

We have neglected deterministic trends and have decided that
our time series follows an AR(p) process.

yT = φ1yT−1 +φ2yT−2 + . . .+φpyT−p + εT εT ∼ IID(0, σ)

1-step-ahead forecast

y∗T+1 = E (yT+1|yT , yT−1, . . .) = φ1yT +φ2yT−1 + . . .+φpyT+1−p

2-step-ahead forecast, can be obtained recursively:

y∗T+2 = E (yT+2|yT , yT−1, . . .) = φ1y∗T+1 +φ2yT + . . .+φpyT+2−p

28 / 40
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Example: AR(p)

Forecast error:

1-step-ahead forecast

e1 = εT+1

with variance σ2

2-step-ahead forecast

e2 = φ1(YT+1 −Y ∗
T+1) + εT+2 = φ1e1 + εT+2

with variance (1 + φ2
1)σ2

Note that the variance of e2 is greater than the variance of e1. So
the uncertainty in forecast increases as the horizon increases
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Example: AR(p)

Assuming that the shocks (ε) are normally distributed, the forecast
interval:

1-step-ahead
Y ∗

T+1 ± 1.96σ

2-step-ahead

Y ∗
T+2 ± 1.96

√
(1 + φ2

1)σ
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Predict AR(p) in R

> crsp.star.1 = predict(crsp.3, 10)

> crsp.star.1$pred

Time Series:
Start = 997
End = 1006
Frequency = 1
[1] 0.030956276 0.021454042 0.009034718 0.006617194
[5] 0.007352650 0.008756259 0.009172633 0.009141748
[9] 0.008989047 0.008927447
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Predict AR(p) in R

Figure: Prediction 10 lags of CRSP
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Identifying MA(q) in practice

The autocorrelation:

ρk =
{
6= 0 k ≤ q
= 0 k > q

The autocorrelation cuts–off at lag q .
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Identifying MA(q) in practice

Figure: ACF of monthly simple returnts of CRSP equal-weighted index
Jan. 1926 - Dec. 2008
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Identifying MA(q) in practice

In the example, lags 1, 3 and 9 seem significant. So the suitable
model could be:

yt = µ+ εt − θ1εt−1 − θ3εt−3 − θ9εt−9

> crsp.4 <- arima(crsp, order = c(0, 0, 9), fixed = c(NA,

+ 0, NA, 0, 0, 0, 0, 0, NA, NA))

> crsp.4$coef

ma1 ma2 ma3 ma4
0.110762094 0.000000000 -0.117357685 0.000000000

ma5 ma6 ma7 ma8
0.000000000 0.000000000 0.000000000 0.000000000

ma9 intercept
0.074343367 0.008910143
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MA(q) forecasting

YT = µ+ εT + θ1εT−1 + . . .+ θqεT−q εT ∼ IID(0, σ2)

1-step-ahead forecast

Y ∗
T+1 = E (YT+1|FT ) = µ+ θ1εT + . . .+ θqεT+1−q

2-step-ahead forecast

Y ∗
T+2 = E (YT+2|FT ) = µ+ θ2εT + . . .+ θqεT+2−q

T+1-step-ahead forecast

Y ∗
2T+1 = E (Y2T+1|FT ) = µ
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MA(q) forecasting

Forecast error:

1-step-ahead forecast

e1 = E (YT+1 −Y ∗
T+1) = εT+1

with variance σ2

2-step-ahead forecast

e2 = E (YT+2|FT ) = εT+2 + θ1εT+1

with variance σ2(1 + θ2
1)

The forecast confident intervals are obtained as for the AR(p)
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Identifying ARMA models

If the ACF and PACF both decrease then we have an ARMA
model

The ACF and PACF are not informative in determining the
order

This has to be done ad hoc.
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Forecasting ARMA(p,q)

YT = c +
p∑

i=1

φiYT−i +
q∑

i=0

θiεT−i

with θ0 = 1.

1-step-ahead forecast

Y ∗
T+1 = E (YT+1|FT ) = c +

p∑
i=1

φiYT+1−i +
q∑

i=0

θiεT+1−i

2-step-ahead forecast

Y ∗
T+2 = E (YT+2|FT ) = µ+φ1Y ∗

T+1+
p∑

i=2

φiYT+2−i+
q∑

i=0

θiεT+2−i
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Forecasting ARMA(p,q)

Forecast error:

1-step-ahead forecast

e1 = E (YT+1 −Y ∗
T+1) = εT+1

with variance σ2

2-step-ahead forecast

e2 = E (YT+2|FT ) = φ1e1 + εT+2 + θ1εT+1

with variance (1 + φ2
1 + θ2

1)σ2

The forecast confident intervals are obtained as for the AR(p)
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