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Introduction

The univarite AR(p) process

yt = c + φ1yt−1 + . . .+ φpyt−p + εt εt ∼ IID(0, σ2)

explains the interaction of yt with its previous p lags.

Q: Might yt depend not only on its own lags but on the lags of
other variables?

Q: Should we model the co-movements of sereval variables?
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Introduction

Financial markets are dependant of each other and knowing
the financial market are interrelated is very important

Consumption and income

Stock prices and dividends

Forward and spot exchange rates

Interest rates, money growth, income, inflation
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Examples
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Examples
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Examples

−30 −10 0 10 20 30

−
3

0
−

1
0

1
0

3
0

S&P 500

IB
M

−30 −10 0 10 20 30

−
3

0
−

1
0

1
0

3
0

S&P 500 Lag 1

IB
M

−30 −10 0 10 20 30

−
3

0
−

1
0

1
0

3
0

S&P 500

IB
M

 L
a

g
 1

−30 −10 0 10 20 30

−
3

0
0

2
0

S&P 500 Lag 1

S
&

P
 5

0
0

7 / 58



Introduction VAR model MLE Bivariate Granger’s Causality Impluse Responses

Examples

There is correlation (linear dependency) between the two
series at time t (concurrent correlation)

The cross correlation at lag 1 is weak

Can we obtain the sample cross correlation matrix (CCM)?
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pth order Vector Autoregression: VAR(p)

Consider n time series variables yt = (y1t , . . . , ynt)′.

For example n = 2 where yt = (y1t , y2t)′ where y1t might be the
log of the GNP in year t and y2t is the interest rate paid on
Treasury bills in year t .

The VAR(p) model:

yt = c + Φ1yt−1 + . . .+ Φpyt−p + εt

Note: The bold notation means that the object is a vector or a
matrix.
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VAR(p)


y1t

y2t
...

ynt

 =


c1

c2
...

cn

+


φ1

11 . . . φ1
1n

φ1
21 . . . φ1

2n
...

...
φ1

n1 . . . φ1
nn




y1,t−1

y2,t−1
...

yn,t−1

+ . . .

+

 φp
11 φp

12 . . . φp
1n

...
...

φp
21 φp

22 . . . φp
nn




y1,t−p

y2,t−p
...

yn,t−p

+


ε1t
ε2t
...
εnt



εt ∼ IIDn(0,Ω) Ω =


σ11 σ12 . . . σ1n

σ21 σ22 . . . σ2n
...

...
σn1 σn2 . . . σnn


10 / 58



Introduction VAR model MLE Bivariate Granger’s Causality Impluse Responses

VAR(p)

So, the first equation is:

y1t =c1 + φ1
11y1,t−1 + φ1

12y2,t−1 + . . .+ φ1
1nyn,t−1

+ φ2
11y1,t−2 + φ2

12y2,t−2 + . . .+ φ2
1nyn,t−2

. . .

+ φp
11y1,t−p + φp

12y2,t−p + . . .+ φp
1nyn,t−p

+ ε1t

Q1: Is there simultaneity?

Q2: How is the second equation?
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VAR(p)

We can use the operator notation with matrices:

[In −Φ1L−Φ2L2 − . . .−ΦpLp]yt = c + εt

or

Φ(L)yt = c + εt

where Φ(L) is the n × n matrix polynomial in the lag operator:
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Covariance-stationarity of VAR(p)

Q: Do you remember when an AR(p) process was weakly
stationary?

A1: First and second moments are all independent of t

A2: The polynomial 1− φ(z ) have roots outside the inner circle.

A3: Eigenvalues from det(Iλ− F) = 0 are inside the inner circle.

The same applies to the VAR(p):

1 µ = c + Φ1µ+ Φ2µ+ . . .+ Φpµ

2 The second moment:

Γj = E ((yt − µ)(yt−j − µ)′)
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Second moment of VAR(p)

Var(yt) = Γ0 = [γ0
ij ] =

 Var(y1t) Cov(y1t , y2t) . . . Cov(y1t , ynt)
...

...
. . .

...
Cov(ynt , y1t) Cov(ynt , y2t) . . . Var(ynt)


The correlation matrix of yt

Corr(yt) = R0 = D−1Γ0D−1

where D is a n × n diagonal matrix with
√
γ0
ii as elements.
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VAR(p) moments estimated from the data

Ergodicity:

Covariance stationary⇒ ergodic in the mean

y =
1
T

T∑
t=1

yt →p E (yt) = µ

Stationary Gaussian proccess ⇒ ergodic in the second moment

Γ̂0 =
1
T

T∑
t=1

(yt − y)(yt − y)′ →p Var(yt) = Γ0

R̂0 =D̂−1Γ̂0D̂−1 →p Corr(yt) = R0
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Cross covariance and correlation matrices

y1t , y2t , . . . , ynt , each have each own autocovariances and
autocorrelation matrices.

There is also a cross lead-lag covariances and correlations
between all possible pairs of components.

Γk =[γk
ij ] = E ((yt − µ)(yt−k − µ)′)

Rk =[ρk
ij ] = D−1ΓkD−1

ρk
ij =

γk
ij√
γ0
iiγ

0
jj

=
Cov(yit , yj ,t−k )
std(yit)std(yjt)
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Cross covariance and correlation matrices

When k > 0, this correlation measures the linear dependency
of yit on yj ,t−k

If ρk
ij 6= 0 and k > 0 we say that the series yjt leads the series

yit at lag k
ρk
ii is the lag-k autocorrelation coefficient of yit

ρk
ij 6= ρk

ji for i 6= j . The two correlations measure two different
linear dependencies.

So Γk and Rk are generally non-symmetric

However ρk
ij = ρ−k

ji

What does it mean ρk
ij = ρ−k

ji but ρk
ij 6= ρk

ji for i 6= j ?
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State Space form of VAR(p)

It can be written as a VAR(1): ξt = Fξt−1 + vt

ξt =


yt − µ

yt−1 − µ
...

yt−p+1 − µ



F =


Φ1 Φ2 . . . Φp−1 Φp

In 0 . . . 0 0
...

...
0 0 . . . In 0



vt =


εt
0
...
0


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Covariance-stationarity of VAR(p)

ξt+s = vt+s + Fvt+s−1 + F2vt+s−2 + . . .+ Fs−1vt+1 + Fsξt

The VAR is weakly stationary if:

1 The eigenvalues of F all lie inside the unit circle:

det(Inλ
p −Φ1λ

p−1 − . . .−Φp) = 0

or

2 The roots of

(In −Φ1z − . . .−Φpz p) = 0

lie outside the unit circle.
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Example: VAR(1), n = 2

For example assume that y1t correspond to the IBM log returns
and y2t correspond to the S&P 500 log returns.

y1t =c10 + φ11y1,t−1 + φ12y2,t−1 + ε1t

y2t =c20 + φ21y1,t−1 + φ22y2,t−1 + ε2t(
ε1t
ε2t

)
∼N

((
0
0

)
,Ω =

(
σ11 σ12

σ21 σ22

))
Because Ω is positive definite, it can be decomposed Ω = LGL′

where L is lower triangular with unit diagonal elements and G is a
diagonal matrix.
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Example: VAR(1), n = 2

φ12 denotes the linear dependence of y1t on y2,t−1 in the
presence of y1,t−1

φ12 is the conditional effect of y2,t−1 on y1t given y1,t−1

Q: What does it mean φ12 = 0? and φ21 = 0?

If φ12 = φ21 = 0 then y1t and y2t are uncoupled

If φ12 6= 0 and φ21 6= 0 then there is a feedback relationship
between the two series

σ12 = σ21 and measures the concurrent correlation between
y1t and y2t (Γ0)

If σ12 = 0 then there is no current linear relationship between
the two component series
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Example: VAR(1), n = 2

Structural equation: the two equation system is converted into one
equation:
The reduced form:

yt = c + Φ1yt−1 + εt

The structural form:

L−1yt =L−1c + L−1Φ1yt−1 + L−1εt

=c∗ + Φ∗1yt−1 + ηt

24 / 58



Introduction VAR model MLE Bivariate Granger’s Causality Impluse Responses

Example: VAR(1), n = 2

For example:(
y1t

y2t

)
=
(

0.2
0.4

)
+
(

0.2 0.3
−0.6 1.1

)
︸ ︷︷ ︸

Φ

(
y1,t−1

y2,t−1

)
+
(
ε1t
ε2t

)
Ω =

(
2 1
1 1

)

L =
(

1 0
0.5 1

)
L−1 =

(
1 0
−0.5 1

)
In fact,

Ω =
(

1 0
−0.5 1

)(
2 0
0 0.5

)(
1 0
−0.5 1

)′
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Example: VAR(1), n = 2

Multiplying the equation by L−1 we get the structural VAR which
shows explicitly the concurrent linear dependence of y2t on y1t

(
y1t

y2t

)
=
(

0.2
0.3

)
+
(

0
0.5y1t

)
+
(

0.2 0.3
−0.7 0.95

)(
y1,t−1

y2,t−1

)
+
(

u1t

u2t

)
Ωu =

(
2 0
0 0.5

)

Orthogonal error.
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Structural VAR (SVAR)

> matrix(c(2,1,1,1), nrow=2, byrow=T)->Omega

> library(bdsmatrix)

> L=gchol(Omega)

> G= diag(c(diag(L)))

> L=as.matrix(L)

> L

[,1] [,2]
[1,] 1.0 0
[2,] 0.5 1

> G

[,1] [,2]
[1,] 2 0.0
[2,] 0 0.5
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Structural VAR (SVAR)

> c= c(0.2, 0.4)

> Phi=matrix(c(0.2, 0.3, -0.6, 1.1), nrow=2, byrow=T)

> c.star= solve(L)%*%c

> Phi.star= solve(L)%*%Phi

> c.star

[,1]
[1,] 0.2
[2,] 0.3

> Phi.star

[,1] [,2]
[1,] 0.2 0.30
[2,] -0.7 0.95
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Structural VAR (SVAR)

> Sigma.u = solve(L)%*%Omega%*%solve(t(L))

> Sigma.u

[,1] [,2]
[1,] 2 0.0
[2,] 0 0.5
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Example: VAR(1), n = 2

Stationarity:

det(λI2 −Φ) = det
(
λ− 0.2 −0.3

0.6 λ− 1.1

)
= 0

λ2 − 1.3λ+ 0.4 = 0

λ1 = 0.8 λ2 = 0.5

Q: Is it stationary?
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Exercise (5minutes)

Find roots z :

det(I2 −Φz ) = 0

Q: Is it stationary?
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Important issues of a stationary VAR

If the process is stationary, then the εit are uncorrelated with
yi ,t−1, . . . ,yi ,t−p

Endogeneity is avoided by using lagged values of
y1t , y2t , . . . , ynt

The VAR(p) model is just a semingly unrelated regression
(SUR) model with lagged variables and deterministic terms as
common regressors

Then, parameters of a vector autoregression can be estimated
consistently with n OLS regresssions, one for each equation.

Q: What estimator you think will be more efficient?
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Conditional maximum likelihood for a VAR

Let yt denote a n × 1 vector containing the n variables at
time t .

yt = c + φ1yt−1 + . . .+ φpyt−p + εt εt ∼ IIDN (0,Ω)

Suppose we have observed each of these n variables for T + p
time periods

The initial values are y−p+1,y−p+2, . . . ,y0 and to base the
estimation on the last T observations y1,y1, . . . ,yT

Want to find the conditional likelihood function

fYT,...Y1|Y0,...Y−p+1
(yT, . . . ,y1|y0,y−1, . . . ,y−p+1;θ)
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Conditional maximum likelihood for a VAR

Then, we maximise the conditional likelihood function with
respect to θ which contains c,Φ1, . . . ,Φp and Ω.

Because εt ∼ IIDN (0,Ω) then

yt|y0,y−1, . . . ,y−p+1 ∼ N (c + φ1yt−1 + . . .+ φpyt−p ,Ω)

If we define xt = (1,yt−1, . . . ,yt−p)′ and
Π′ = (c,Φ1, . . . ,Φp) then, the conditional distribution can be
written as

yt|y0,y−1, . . . ,y−p+1 ∼ N (Π′xt ,Ω)

Q: We know the conditional density of a normal, don’t we?
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Conditional maximum likelihood for a VAR

The conditional likelihood function of our sample is:

fYT,...,Y1|Y0,...Y−p+1
(yT, . . . ,y1|y0,y−1, . . . ,y−p+1;θ) =

T∏
t=1

fYt|Yt−1,...,Y−p+1
(yt|yt−1, . . . ,y−p+1;θ)

Taking logs:

L(θ) =
T∑

t=1

log fYt|Yt−1,...,Y−p+1
(yt|yt−1, . . . ,y−p+1;θ)

=
−Tn

2
log(2π) +

T
2

log |Ω−1|

− 1
2

T∑
t=1

[
(yt −Π′xt)′Ω−1(yt −Π′xt)

]
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MLE of Π

Assuming normality of the innovations and uncorrelation, the MLE
of Π which contains c and Φj is:

Π̂′ =

[
T∑

t=1

ytx′t

][
T∑

t=1

xtx′t

]−1

In particular the j th row, corresponding to the j th equation is:

π̂j
′ =

[
T∑

t=1

yjtx′t

][
T∑

t=1

xtx′t

]−1

Q: Does this last equation reminds you of something?

36 / 58



Introduction VAR model MLE Bivariate Granger’s Causality Impluse Responses

MLE of Ω

Substituting Π̂ into the conditional log likelihood function, we
obtain the following:

L(Ω, Π̂) =
−Tn

2
log(2π) +

T
2

log |Ω−1| − 1
2

T∑
t=1

ε̂t ε̂
′
t

The estimator:

Ω̂ =
1
T

T∑
i=1

ε̂t ε̂
′
t

The ij -element of Ω̂:

σij =
1
T

T∑
t=1

ε̂it ε̂jt

37 / 58



Introduction VAR model MLE Bivariate Granger’s Causality Impluse Responses

VAR in R

Let us simulate t = 250 observations of:

y1t =− 0.7 + 0.7y1,t−1 + 0.2y2,t−1 + ε1,t

y2t =1.3 + 0.2y1,t−1 + 0.7y2,t−1 + ε2,t

Therefore:

Φ =
(

0.7 0.2
0.2 0.7

)
, c =

(
−0.7
1.3

)
, µ =

(
1
5

)
,Ω =

(
1 0.5

0.5 1

)
> Phi1= matrix(c(0.7, 0.2, 0.2, 0.7), nrow=2, ncol=2)

> mu.vec= c(1,5)

> c.vec= as.vector((diag(2)- Phi1) %*% mu.vec)

> Omega= matrix(c(1, 0.5, 0.5, 1), 2,2)

> library(vars)

> eigen(Phi1)$values

[1] 0.9 0.5
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VAR in R

> library(tseries)

> library(MASS)

> set.seed(42)

> T = 250

> nvar= 2 # 2 variables

> y.var = matrix(0,nvar,T)

> y.var[,1] = mu.vec

> e.var = mvrnorm(T,mu= rep(0, nvar), Sigma=Omega)

> e.var = t(e.var)

> for (i in 2:T) {

+ y.var[,i] = c.vec+Phi1%*%y.var[,i-1]+e.var[,i]

+ }

> y.var = t(y.var)

> dimnames(y.var) = list(NULL,c("y1","y2"))

> eigen(Phi1)$values

[1] 0.9 0.5

> colMeans(y.var)

y1 y2

0.6757314 4.7459675
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VAR in R

−
4

0
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y
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0
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y
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VAR in R

Let us estimate it:
> y1=VAR(y.var, lag.max= 4, ic="AIC")

> y1

VAR Estimation Results:

=======================

Estimated coefficients for equation y1:

=======================================

Call:

y1 = y1.l1 + y2.l1 + const

y1.l1 y2.l1 const

0.5932973 0.2486591 -0.8995433

Estimated coefficients for equation y2:

=======================================

Call:

y2 = y1.l1 + y2.l1 + const

y1.l1 y2.l1 const

0.1664443 0.7229253 1.2090046

>
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VAR in R

Let us estimate it:
> y2=VAR(y.var, p=2)

> y2

VAR Estimation Results:

=======================

Estimated coefficients for equation y1:

=======================================

Call:

y1 = y1.l1 + y2.l1 + y1.l2 + y2.l2 + const

y1.l1 y2.l1 y1.l2 y2.l2 const

0.63052937 0.22582772 -0.07910579 0.05884478 -1.04080425

Estimated coefficients for equation y2:

=======================================

Call:

y2 = y1.l1 + y2.l1 + y1.l2 + y2.l2 + const

y1.l1 y2.l1 y1.l2 y2.l2 const

0.18483169 0.71743728 -0.03641378 0.02010926 1.15361456
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VAR in R

Forecast:
> predict(y1, n.ahead= 10)

$y1

fcst lower upper CI

[1,] 2.440713 0.4864977 4.394929 1.954215

[2,] 2.195191 -0.2368253 4.627206 2.432016

[3,] 1.994919 -0.7151820 4.705021 2.710101

[4,] 1.826463 -1.0714308 4.724357 2.897894

[5,] 1.682347 -1.3492984 4.713992 3.031645

[6,] 1.557938 -1.5712537 4.687130 3.129192

[7,] 1.450036 -1.7512194 4.651292 3.201256

[8,] 1.356225 -1.8986983 4.611149 3.254924

[9,] 1.274563 -2.0205449 4.569671 3.295108

[10,] 1.203431 -2.1218800 4.528742 3.325311

$y2

fcst lower upper CI

[1,] 6.622180 4.766145 8.478216 1.856035

[2,] 6.402589 3.996305 8.808874 2.406285

[3,] 6.202975 3.460656 8.945295 2.742319

[4,] 6.025335 3.054596 8.996075 2.970740

[5,] 5.868876 2.735960 9.001793 3.132916

[6,] 5.731781 2.481087 8.982475 3.250694

[7,] 5.611964 2.274567 8.949361 3.337397

[8,] 5.507386 2.105591 8.909180 3.401794

[9,] 5.416169 1.966252 8.866086 3.449917

[10,] 5.336634 1.850600 8.822668 3.486034
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Asymptotic distribution of Π

If the following conditions are satisfied:

Independent innovations,

Bounded fourth-cumulant of the innovations, and

Roots of the polynomial outside the unit circle

We name π̂T = vec(Π̂T ) which are the estimator of the
coefficients using a sample of size T . Then,
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Asymptotic distribution of Π̂

1 1
T

∑T
t=1 xtx′t →P Q where Q = E (xtx′t)

2 π̂T →P π

3 Ω̂T →P Ω
4
√

T (π̂T − π)→L N (0, (Ω ⊗ Q−1))

For the coefficients of the ith regression

√
T (π̂iT − πi)→L N (0, σ2

i Q−1))

for σ2
i = E (ε2it)
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Asymptotic distribution of , Ω̂

Notation:

vec Ω = vec

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =



σ11

σ12

σ13

σ21

σ22

σ23

σ31

σ32

σ33


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Asymptotic distribution of , Ω̂

Notation: Because the variance covariance matrix is symmetric
σ12 = σ21 and so on. We do not need all the elements. So we have
the same information with the vech function

vech Ω =



σ11

σ21

σ22

σ31

σ32

σ33


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Asymptotic distribution of , Ω̂

Proposition:
If the innovations are IIDN (0,Ω) and the roots of the polynomial
are outside the inner circle:

√
T (vech(Ω̂− vech(Ω)))→L N (0,Σ)

Elements of Ω are σij — variance and covariances amongst
εit and εjt

Elements of Σ are the covariances between σ̂ij and σ̂lm all
1 ≤ i , j , l ,m ≤ n.

These elements are σilσjm + σimσjl
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Important issues

Choice of p
Suggested by theoretical methods
Rule of thumb
Statistical criteria (trade-off fit against number of parameters)

Choice of variables included in the model
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Choice of p

Theoretical methods: Keynesian model...

Rules of thumb: quarterly data (p=4), monthly data (p=6).
Very large p will result in a lot of parameters. So it is unwise
to fit more than T/ parameters in each equation. For
example, p = 4 would mean n < 7.

Statistical criteria. We can keep increasing the likelihood by
increasing the number of parameters. We have to find a
trade-off between fit and number of parameters

AIC
SBIC
Hannan-Quinn (HC)
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Choice of variables

By institutional knowledge

experience on previous projects,
context: if we have a small open economy problem, we will be
using foreign output and real exchange rate as variables,
however we wouldn’t use liquidity.

Theoretical models

Small number of variables means likely high p and high p indicates
the need of more variables

So not only p is important also n.
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Structural Analysis

It is very difficult to get conclusions out of outputs of the VAR
model

Three main analyses:
1 Granger causality test
2 impulse response functions
3 forecast error decomposition
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Granger’s Causality

Granger (1969) introduced the causality problem.

A variable y2t is Granger causal for a time series variable y1t if the
former helps to improve the forecast of the latter.

Let y∗1,t+h|Ft
be the optimal h-step forecast of y1t at origin t based

on a set information of the universe Ft . So y2t is Granger
non-causal if and only if

y∗1,t+h|Ft
= y∗

1,t+h|Ft�{y2t ,s|s≤t}︸ ︷︷ ︸
F2t

In other words:

MSE (Ê (y1,t+h |y1t , y1,t−1 . . .)) = MSE (Ê (y1,t+h |y1t , y1,t−1 . . . , y2t , y2,t−1, . . .))
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Bivariate Granger’s Causality

Equivalently, we say that y1t is exogenous in the time series sense
with respect to y2t if the above equation holds

Another way to say it is: y2t is not linearly informative about trhe
future y1t

Formally, y2 fails to Granger-cause y1 if for all s > 0 the MSE of a
forecast of y1,t+s based on (y1t , y1,t−1, . . .) is the same as the
MSE of a forecast of y1,t+s based on (y1t , y1,t−1, . . .) and
(y2t , y2,t−1, . . .)

The notion of Granger causality does not imply true causality. It
only implies forecasting ability.
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Bivariate Granger’s Causality in VAR(p)

(
y1t

y2t

)
=
(

c1

c2

)
+
(
φ1

11 0
φ1

12 φ1
22

)(
y1,t−1

y2,t−1

)
+
(
φ2

11 0
φ2

12 φ2
22

)(
y1,t−2

y2,t−2

)
+ . . .+

(
φp

11 0
φp

12 φp
22

)(
y1,t−p

y2,t−p

)
+
(
ε1t
ε2t

)

y2t does not Granger-cause y1t if the coefficients of matrices Φj

are lower triangular for all j = 1, . . . , p

Q: What about y1t does not Granger-cause y2t instead ? How are
the matrices Φj ?
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Econometric tests for Granger’s causality

The p linear coefficient restrictions implied by Granger
non-causality may be tested using the Wald statistic

Wald =(R · vec(Π̂)
{

R[ÂVar(vec(Ω̂)]R′
}−1

× (R · vec(Π̂)
H0 : y2 does not Granger-cause y1

H0 :φ1
12 = . . . = φp

12 = 0

The null hypothesis is rejected if Wald > F (p,T − 2p − 1)
R in the Wald statistics does not refer to the cross correlation
function but to set of linear constraints.

For example, to test H0 : c1 = c2 then
R = (1, 0, 0, . . . ,−1, 0, . . . , 0) where -1 is in the n + 1
position. Then Rπ = 0⇒ c1 = c2
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Vector MA(∞) representation of VAR

If the VAR(p) process is covariance-stationary, then we can
represent it as a Vector MA(∞):

yt = µ+ εt + Ψ1εt−1 + Ψ2εt−2 + . . .

Ψs is the impact of the shock εt upon yt+s holding the rest
constant:

Ψs =
∂yt+s

∂ε′t

This matrix is also called the Impulse Response (IR). Its ij element
identifies the consequences of one unit increase in the j th
variable’s innovations at date t (εjt) for the value of the ith
variable at time t + s (yi ,t+s), holding all the innovations constant.
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Impulse response functions

We would like to know whether the IRF can tell us about the
effect of a change in yjt on yi ,t+s .

∂y∗i ,t+s

∂yjt
=
∂yi ,t+s

εjt
?

The answer is no in general, unless Ω is diagonal
(uncorrelated errors).

We can transform our VAR model into a model with
uncorrelated errors.

Sims (1980) show how to do this transformation and how to
estimate the triangular structural VAR (SVAR).

He got a Nobel prize last year for this kind of work.
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