
GARCH Model

The ARCH model often requires a large order to adequately
describe the volatility process of returns.

Bollerslev proposes a Generalised ARCH model

ARCH is like an AR model for volatility

GARCH is like an ARMA model for volatility.
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GARCH Model

The GARCH(p, q) model is:

rt =µt + εt

εt =ztσt , zt ∼ IID(0, 1)

σ2
t =a0 + a(L)ε2t + b(L)σ2

t , a0 > 0
a(L) =a1L + . . .+ apLp , ai ≥ 0
b(L) =b1L + . . .+ bqLq bj ≥ 0

Note: for identification of bj , must have at least one ARCH
coefficient ai > 0
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Conditional Mean Specification

µt = E [rt |Ft−1] is typically specified as a constant or possibly
a low order ARMA process to capture autocorrelation caused
by market microstructure effects (e.g., bid-ask bounce) or
non-trading effects.

If extreme or unusual market events have happened during
sample period, then dummy variables associated with these
events are often added to the conditional mean specification
to remove these effects. The typical conditional mean
specification is of the form

E [rt |Ft−1] = c +
p∑

i=1

φiyt−i +
q∑

j=1

θj εt−j +
L∑

l=0

β′lxt−l + εt

where xt is a k × 1 vector of exogenous explanatory variables.
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Explanatory Variables in the Conditional Variance Equation

Exogenous explanatory variables may also be added to the
conditional variance formula

σ2
t = a0 +

p∑
i=1

aiε
2
t−i +

q∑
j=1

bjσ
2
t−j +

K∑
k=1

δ′kyt−k

where yt is a m × 1 vector of variables, and δ is a m × 1
vector of positive coefficients.

Variables that have been shown to help predict volatility are:
trading volume, interest rates, macroeconomic news
announcements, implied volatility from option prices and
realized volatility, overnight returns, and after hours realized
volatility
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Properties of GARCH model

Let a random variable ηt = ε2t − σ2
t = ε2t − E (ε2t |Ft−1).

It can be shown that this variable is a Martingale difference
series: E (ηt) = 0 and it is uncorrelated. However it is not
indenpendent.

Substituying σ2
t = ε2t − ηt in the GARCH equation we have:

ε2t = a0 +
max(p,q)∑

i=1

(ai + bi)ε2t−i + ηt −
q∑

j=1

bj ηt−j

Q: Does it remind you of any process?
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Properties of GARCH model

The GARCH(p,q) is an ARMA(max(p,q),q) of ε2t

What is its unconditional mean of ε2t ?

What is the unconditional variance of εt?

Is εt weakly stationary?
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Properties of GARCH model

1 GARCH(p, q) is equivalent to ARCH(∞). If 1− b(z ) = 0 has
all roots outside unit circle then

σ2
t =

a0

1− b(1)
+

a(L)
1− b(L)

ε2t

=a∗0 + δ(L)ε2t , δ(L) =
∞∑

k=0

δkLk

2 εt is a stationary and ergodic with finite variance provided
a(1) + b(1) < 1

E [εt ] =0

var(εt) =E [ε2t ] =
a0

1− a(1)− b(1)

ε2t ∼ ARMA(m, q) m = max(p, q)
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GARCH(1,1)

The most commonly used GARCH(p,q) model is the GARCH(1,1)

σ2
t = a0 + a1ε

2
t−1 + b1σ

2
t−1

Show the following properties:

stationarity condition:

ARCH(∞) :
ARMA(1, 1) :

unconditional variance:

8 / 21



GARCH(1,1)

Large ε2t−1 implies large σ2
t as in the ARCH but also does

large σ2
t−1

Large innovations tend to be followed by large innovations
(volatility clustering)

Leptokurtosis: if 1− 2a2
1 − (a1 + b1)2 > 0 then

E (ε4t )
E 2(ε2t )

=
3(1− (a1 + b1)2)

1− 2a2
1 − (a1 + b1)2

> 3

This means that the tail distribution of a GARCH(1,1) process
is heavier than that of a normal distribution

The model describes how the volatility evolves
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GARCH model

Specifying the order of a GARCH model is not easy.

In practice, only small order models are used: GARCH(1,1),
GARCH(2, 1) and GARCH(1,2).

The conditional maximum likelihood method contine to apply
provided that the starting values of σ2

t are known.

For example, if σ2
1 is treated as fixed, then σ2

t can be
computed recursively for a GARCH(1,1) model

In some applications, the sample variace of εt serves as a good
starting value of σ2

1

The fitted model can be checked by using the standarised
residuals ε̂ and its squared process
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Example

We consider the montly excess returns (excess returns are generally
defined as the returns provided by a given portfolio minus the
returns provided by a risk-free asset) of S&P 500 from 1926 (T=
792). The file is sp500.dat.

> sp500=scan("../data/sp500.dat")

> plot(sp500, type="l",ylab="Return", xlab="Time index")
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Example
Top to bottom: ACF of returns, PACF of squared returns
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Example

From the ACF, we see some serial correlation in the returns at
lags 1 and 3 (MA(3))

The PACF of r2
t shows strong linear dependence

(heteroskedasticity)

We fit an MA(3) model without second lag

> sp500.ma<-arima(sp500, order=c(0,0,3),

+ fixed= c(NA, 0, NA, NA))

> theta<-round(coef(sp500.ma),4)

rt = 0.0062 + εt + 0.094εt−1 − 0.1407εt−3 σ̂2 = 0.0576
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Example

In this example we use an AR(3) which is more simple.

> sp500.ar<-arima(sp500, order=c(3,0,0), method="ML")

> phi<-round(coef(sp500.ar),4)

> phi

ar1 ar2 ar3 intercept
0.0890 -0.0238 -0.1229 0.0062

> epsilon_t=residuals(sp500.ar)

rt = 0.0062+0.089rt−1−0.0238rt−2−0.1229rt−3+εt σ̂2 = 0.0033

Plot the ACF of the residuals and squared residuals.

εt = rt − µt = σtzt
We see that the residuals are uncorrelated but there is correlation
in the squared residuals ⇒ heteroskedasticity
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Example
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Example

We want to fit a GARCH(1,1) on the residuals

εt =σtzt
σ2

t =a0 + a1ε
2
t−1 + b1σ

2
t−1

We do a joint estimation of the AR(3)-GARCH(1,1) in R
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Example

> library(fGarch)

> r=epsilon_t^2

> sp500.garch<-garchFit(r~garch(1,1), trace=F,

+ include.mean=F)

> coef<-coef(sp500.garch)

> coef

omega alpha1 beta1
0.0108681 0.1543255 0.8045162

> #Implied unconditional variance of epsilon_t

> sigma2.bar=coef[1]/(1-sum(coef[2:3]))

> sigma2.bar

omega
0.2640563

Run the command summary(sp500.garch) at home.
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Example

One step command:

> sp500.garch2<-garchFit(sp500~arma(3,0)+garch(1,1), trace=F)

> coef2<-coef(sp500.garch2)

> round(coef2,4)

mu ar1 ar2 ar3 omega alpha1 beta1
-0.0060 0.0536 -0.0280 0.0171 0.0115 0.1602 0.7958

> #Implied unconditional variance of epsilon_t

> sigma.bar.2=coef2[5]/(1-sum(coef2[6:7]))

> sigma.bar.2

omega
0.261744
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GARCH-in-Mean (GARCH-M)

Idea: Modern finance theory suggests that volatility may be related
to risk premia on assets.

The GARCH-M model allows time-varying volatility to be realted
to expected returns

rt = c + αg(σt) + εt εt ∼ GARCH

Choices of g(σt):

σt

σ2
t

ln(σ2
t )
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Temporal Aggregation

Volatility clustering and non-Gaussian behavior in financial
returns is typically seen in weekly, daily or intraday data. The
persistence of conditional volatility tends to increase with the
sampling frequency.

For GARCH models there is no simple aggregation principle
that links the parameters of the model at one sampling
frequency to the parameters at another frequency. This occurs
because GARCH models imply that the squared residual
process follows an ARMA type process with MDS innovations
which is not closed under temporal aggregation.
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Temporal Aggregation

The practical result is that GARCH models tend to be fit to
the frequency at hand. This strategy, however, may not
provide the best out-of-sample volatility forecasts. For
example,Martens (2002) showed that a GARCH model fit to
S&P 500 daily returns produces better forecasts of weekly and
monthly volatility than GARCH models fit to weekly or
monthly returns, respectively.
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