
Lecture 4: Training and evaluating models with package
caret

Isabel Casas
icasas@deusto.es

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 1 / 31

mailto:icasas@deusto.es
mailto:icasas@deusto.es

Machine learning

So you’ve got a clean MPG dataset, picked the statistical model you’re
going to use, trained your model and got some results. They may even
look pretty good!

But how do you know if your model is the best that it can be? One
way to improve a model is through hyperparameter tuning.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 2 / 31

mailto:icasas@deusto.es

Definition: Parameter vs hyperparameter

Parameter: What the algorithm or model is learning during training.
Example: coefficients in a regression.

Hyperparameters: We set them in the model. Example: the number of
trees in a random forest, the number of variables in each of these trees.

The importance of hyperparameters in building robust models will
specifically depend on the type of model you’re training.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 3 / 31

mailto:icasas@deusto.es

Hyperparameters

We can try to pick the best values for our hyperparameters by hand,
fitting several models with different settings and choosing the
combination with the smallest error (Remember how we chose the
number of trees in the last lab).

Luckily for us, R has the caret package, designed to optimize
hyperparameter choices quickly and systematically for many different
models.

In this class, we will learn how to use the caret package to select the
best-performing hyperparameters for a specific model.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 4 / 31

mailto:icasas@deusto.es

Prediction performance

Machine learning techniques in the training phase to pick the best model:

Bootstrap
Holdout
Cross-validation
Monte Carlo

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 5 / 31

mailto:icasas@deusto.es

Split the dataset

1 Upload the data into our memory and do any cleansing necessary.
2 Split dataset into training and testing sets using the appropriate

splitting methodology.
1. Upload data
mpg.data <- read.table("../Lecture02/data/mpg_new.csv",

sep =";", header = TRUE)

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 6 / 31

mailto:icasas@deusto.es

Holdout Methodology

The holdout method consists of randomly dividing the available data
into training and test samples, usually with a ratio of 70% or 80% for
training and 30% or 20% for testing.

The holdout method is often used with large datasets because there is
a danger of either having a test set that is too small (unreliable
prediction) or too small a training set (worse model than the one with
the whole dataset) for small datasets.

Because our MPG dataset is small, we will use 80% of the data for
training and the rest for testing.

The ratio could be different if we had a very large dataset. Perhaps the
opposite.

Commonly, we get more accurate models the bigger the dataset we’re
training on, but more training data also leads to models taking longer
to train and the issue of overfitting.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 7 / 31

mailto:icasas@deusto.es

Testing vs Predicting samples

The testing sample (or validation sample) is not a prediction sample.

The training sample is divided in two parts, as we mentioned before,
the first part for training and the second for testing.

Knowing which model predicts bests in both phases, we could use it for
prediction in another related dataset.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 8 / 31

mailto:icasas@deusto.es

Holdout data split in R

Package caret has the function createDataPartition() that randomly samples the
proportion of the indexes of a vector you pass on.
library(caret)
set.seed(1234)
2. Splitting into training and test samples
training_indexs <- createDataPartition(mpg.data$mpg, p = 0.8, list = FALSE)
training <- mpg.data[training_indexs,]
testing <- mpg.data[-training_indexs,]
training_indexs[1:10]

[1] 2 3 4 5 6 7 8 9 10 11

The number of rows of mpg.data is 398, we use 321 rows for training and 77 rows for
testing.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 9 / 31

mailto:icasas@deusto.es

Cross-validation Methodology

Measuring the estimation MAE or RMSE is a rough way of measuring
model fitting accuracy, and it will depend heavily on the quality of the
training sample.

To avoid this caveat, we can use the k-Fold cross-validation (CV).

When k = 1, it is denoted by leave-one-out cross-validation (LOOCV).
LOOCV is one of the most common methods to evaluate the
performance of a model. It consists of repeating k times a train/test
cycle, but where the test sample is carefully chosen instead of randomly
selected as in k repetitions of random subsampling.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 10 / 31

mailto:icasas@deusto.es

Cross-validation Methodology

Figure 1: Steps in k-Fold cross-validation.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 11 / 31

mailto:icasas@deusto.es

Cross-validation Methodology

Figure 1 shows graphically the CV steps:
1 Randomly re-shuffling the original data
2 Split the dataset into k equal-sized partitions of which we pick one

partition for testing (gold coloured) and k − 1 for training (green
colour). This is repeated B times. The final model score will be the
average of every repetition score.

Remark 1. k-Fold CV may take a good while for large datasets.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 12 / 31

mailto:icasas@deusto.es

Cross-validation in R

We can use caret to split the data with k-Fold CV by using the
trainControl() function.

Below, you can see an example of a 5-Fold CV with training. CV gives
us the opportunity to use several subsamples of training, in fact k
subsamples, in the hope to get trained model.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 13 / 31

mailto:icasas@deusto.es

Cross-validation in R

The chunk below:
1 Performs 5-fold cv in the training set 20 times, i.e., there are 100

model evaluations
2 Train and tune three models (regression, tree and RF)

ctrl <- caret::trainControl(method = "repeatedcv", number = 5,
repeats = 20, savePredictions = "final")

model_cv <- caret::train (mpg ~ . , data = training,
methodList=c("lm", "rpart", "rf"),
trControl = ctrl, metric = "RMSE")

model_cv

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 14 / 31

mailto:icasas@deusto.es

Cross-validation in R

Output from previous slide. It choose RF automatically and with different
values of the hyperparameter mtry. From the RMSE, it chooses mtry = 4
Random Forest
##
321 samples
7 predictor
##
No pre-processing
Resampling: Cross-Validated (5 fold, repeated 20 times)
Summary of sample sizes: 256, 258, 258, 256, 256, 257, ...
Resampling results across tuning parameters:
##
mtry RMSE Rsquared MAE
2 2.912923 0.8559528 2.003561
4 2.894200 0.8569121 1.985620
7 2.925685 0.8533429 1.988120
##
RMSE was used to select the optimal model using the smallest value.
The final value used for the model was mtry = 4.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 15 / 31

mailto:icasas@deusto.es

Training an untuned model

The caret package allows us currently to fit 238 types of models using its
function train.

The train() function can be used to:

evaluate an tune the parameters of a model using resampling
choose the “optimal” model across several hyperparameters
estimate model performance from a training set

In our regression problem (predicting mpg), we use the randomforest, which
has two hyperparameters: ntree and mtry.

ntree: This is the total number of trees in your final ensemble model.
mtry: The number of variables (features, predictors) to use in each tree
of the random forest.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 16 / 31

https://topepo.github.io/caret/model-training-and-tuning.html#basic
mailto:icasas@deusto.es

Training an untuned model
caret chooses the hyperparameter value that produces the lowest
overall error for a given model.

Figure 2 below, which is the Fig A4 of Buskirk & Kolenikov (2015)

Figure 2: Figure A4 in Buskirk & Kolenikov (2015).
Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 17 / 31

https://surveyinsights.org/?p=5108
mailto:icasas@deusto.es

Activity in groups

We saw the Bagging methodology in Lab3 and used it to understand
how the randomforest works.

We find in 2 (previous slide) the term OOB in the y-axis.
▶ What does it stand for?
▶ Explain how OOB is used to tune models that have been created with

Bagging

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 18 / 31

mailto:icasas@deusto.es

Tuning ntree in a RF

In Figure 2, the error drops off sharply near the beginning but
continues gently downward.

Increasing the number of trees increases the time it takes to train our
model and makes it more likely that we will overfit the model to our
data.

Therefore, picking ntree by the smallest overall error doesn’t make
sense. (It would probably recommend an infinite number of trees!)

Instead, we want to pick a value near the “elbow”, where we have high
accuracy but aren’t training more trees than necessary. In practice,
most random forest models will perform well with a number of trees
somewhere between 50 and 500.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 19 / 31

mailto:icasas@deusto.es

Tuning mtry in a RF

On the other hand, changing the mtry parameter will usually lead to a
U-shaped error pattern: both very high and very low values will have
higher error rates and somewhere in the middle will be a sweet spot
where the error rate is lower. This is the type of parameter that it
makes sense to tune using caret.

How will we know whether my parameter will respond well to tuning?
The caret authors (Max Kuhn and the rest of the contributors) have
your back. For most models, caret will already know which parameters
make sense to tune and ignore the others.

For example, we can’t actually tune ntree using caret and it will
automatically tune mtry for you. Handy!

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 20 / 31

mailto:icasas@deusto.es

Training a random forest in R

Let’s train a basic randomforest model with the default value of mtry (p/3, for p number of predictors).
train a random forest model
library(randomForest)
rf.model <- randomForest(mpg ~ ., data = training, ntree = 50)
check out the details
rf.model

##
Call:
randomForest(formula = mpg ~ ., data = training, ntree = 50)
Type of random forest: regression
Number of trees: 50
No. of variables tried at each split: 2
##
Mean of squared residuals: 9.10753
% Var explained: 84.32

The output tells us about the model’s qualities and how good it was at capturing the variation in our training data.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 21 / 31

mailto:icasas@deusto.es

Output of train() for RF

Call: It describes what we passed into the randomForest function in
the first place.
Type of random forest: This is automatically determined based on your
target variable mpg . Since our target variable is not a factor, we’ve
trained a regression tree.
Number of trees: We specified this manually (ntree = 50).
No. of variables tried at each split, by default mtry = 7/3 = 2.3 = 3.
Mean squared residuals (MSE) - fitness error measure
% variance explained: It is R-squared value x 100 for this model (100
means that our model perfectly fits our data)

▶ Too small values of MSE or values of % Var too close to 100 ->
overfitting

▶ Too large values of MSE or value of %Var too close to 0 -> bad model
for this dataset

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 22 / 31

mailto:icasas@deusto.es

Prediction

Calculate the untuned model error on testing data using the root mean
squared error (RMSE). Besides the formula we saw last week, we can
use the rmse() function from package ModelMetrics to calculate it.

Tip: Because it scales based on the number of points in your dataset,
it doesn’t usually make sense to compare RMSE for models trained on
different datasets.

#prediction errors
library(ModelMetrics)
rf.model.pred <- predict(rf.model, testing)
rmse(rf.model.pred, testing$mpg)

[1] 2.733357
mse(rf.model.pred, testing$mpg)

[1] 7.471238
mae(rf.model.pred, testing$mpg)

[1] 2.125199

Those numbers by themselves do not mean much. But now that we have a base error, let’s see if we can train a more
accurate model by tuning mtry!

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 23 / 31

mailto:icasas@deusto.es

Tuning model with caret
Tuning our model is pretty simple, it will just take awhile: It trains a bunch of models with different values of hyparameter(s).
use caret to pick a value for mtry
rf.tuned_model <- caret::train(mpg ~ ., data = training, ntree = 50,

tuneGrid = data.frame(mtry = 1:11), method = "rf")
print(rf.tuned_model)

Random Forest
##
321 samples
7 predictor
##
No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 321, 321, 321, 321, 321, 321, ...
Resampling results across tuning parameters:
##
mtry RMSE Rsquared MAE
1 3.135334 0.8347109 2.166495
2 2.978312 0.8461574 2.031661
3 2.965640 0.8475586 2.046576
4 2.963080 0.8469789 2.042085
5 2.986812 0.8445699 2.037476
6 3.007427 0.8428050 2.045458
7 3.029427 0.8402219 2.068865
8 3.032080 0.8396735 2.067650
9 3.038679 0.8391012 2.071822
10 3.017386 0.8413267 2.057702
11 3.045744 0.8381904 2.071641
##
RMSE was used to select the optimal model using the smallest value.
The final value used for the model was mtry = 4.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 24 / 31

mailto:icasas@deusto.es

Tuning model with caret

The train() function picked mtry=4 as the best choice.

The rf for this dataset is most accurate when it uses 4 variable in each
stump, although the theoretical value is mtry = 2

We can see this clearly in the plot of the rmse for each mtry value,
passing our tuned model to ggplot.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 25 / 31

mailto:icasas@deusto.es

Tuning model with caret

library(ggplot2)
ggplot(rf.tuned_model)

3.00

3.05

3.10

3 6 9
#Randomly Selected Predictors

R
M

S
E

 (
B

oo
ts

tr
ap

)

RMSE has an U shape with its lowest value for mtry = 4.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 26 / 31

mailto:icasas@deusto.es

Activity

Create an R script with the code above, using the package caret
Run it an understand the output and what each function does.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 27 / 31

mailto:icasas@deusto.es

Prediction

Estimate and predict using the best model
names(rf.tuned_model)

[1] "method" "modelInfo" "modelType" "results" "pred"
[6] "bestTune" "call" "dots" "metric" "control"
[11] "finalModel" "preProcess" "trainingData" "ptype" "resample"
[16] "resampledCM" "perfNames" "maximize" "yLimits" "times"
[21] "levels" "terms" "coefnames" "xlevels"
rf.tuned_model.est <- predict(rf.tuned_model$finalModel)
rf.tuned_model.pred <- predict(rf.tuned_model$finalModel, newdata = testing)

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 28 / 31

mailto:icasas@deusto.es

Prediction performance

Prediction performance is very important if prediction is the main
objective

One we have trained a model, we will use it to predict future data
outputs.

There are different ways of calculating a model prediction performance
performance

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 29 / 31

mailto:icasas@deusto.es

Pred. performance: Simple accuracy measure
One simple way is to use an error function like the RMSE or MAE and compare the performance of each model in the training and
testing samples.
print("base model estimation rmse")

[1] "base model estimation rmse"
print(rmse(predict(rf.model), training$mpg))

[1] 3.017869
print("tuned model estimation rmse:")

[1] "tuned model estimation rmse:"
print(rmse(rf.tuned_model.est, training$mpg))

[1] 2.926877
print("base model prediction rmse:")

[1] "base model prediction rmse:"

print(rmse(rf.model.pred, testing$mpg))

[1] 2.733357
print("tuned model prediction rmse:")

[1] "tuned model prediction rmse:"

print(rmse(rf.tuned_model.pred, testing$mpg))

[1] 2.358876

Looks like the tuned model has a higher overall error rate than the initial model both in estimation and prediction. This means

that the base model is a better choice altogether.

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 30 / 31

mailto:icasas@deusto.es

References

This lecture is based on:
1 The tutorial Picking the Best Model with Caret by Rachael Tatman

Isabel Casas icasas@deusto.es Lecture 4: Training and evaluating models with package caret 31 / 31

https://www.kaggle.com/rtatman/picking-the-best-model-with-caret/notebook
mailto:icasas@deusto.es

