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Introduction MNL

Introduction

We consider situations with more than two outcomes.

If the ordering of the alternatives is not meaningful (15.9)

Multinomial logit model (MNL)
Conditional logit model (CLM)
Conditional probit model
Nested logit model

If the ordering of the alternatives is meaningful (15.10)

Ordered probit model (OPM)
Ordered logit model (OLM)
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Examples of multinomial response

Choice between transportation mode: Car, bus or train.

Choice of political party: V, S, K, R, SF, etc.

Choice of occupation: wage work; school; self-employment; or
out of labour force

Choice of TV programme: Deadline, Champions League or
Paradise Hotel

More than two alternatives ⇒ classical Logit and Probit not
appropriate.
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Data of multinomial response

The structure of our data is determined by three indexes:

the alternative

the choice situation

the individual

The files can be encountered in two shapes:

”long” shape: one row for each alternative, as many rows as
alternatives for each individual.

”wide” shape: one row for each choice situation
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Data of multinomial response

> library(AER)

> data(TravelMode)

> head(TravelMode)

individual mode choice wait vcost travel gcost income size

1 1 air no 69 59 100 70 35 1

2 1 train no 34 31 372 71 35 1

3 1 bus no 35 25 417 70 35 1

4 1 car yes 0 10 180 30 35 1

5 2 air no 64 58 68 68 30 2

6 2 train no 44 31 354 84 30 2

Four travel modes (air, train, bus and car),

most variables are alternative specific (wait, vcost, travel,
gcost)

individual specific variables (income, size).

This data is in ”long” shape.
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Data of multinomial response

> library(mlogit)

> data(Fishing)

> head(Fishing)

mode price.beach price.pier price.boat price.charter catch.beach

1 charter 157.930 157.930 157.930 182.930 0.0678

2 charter 15.114 15.114 10.534 34.534 0.1049

3 boat 161.874 161.874 24.334 59.334 0.5333

4 pier 15.134 15.134 55.930 84.930 0.0678

5 boat 106.930 106.930 41.514 71.014 0.0678

6 charter 192.474 192.474 28.934 63.934 0.5333

catch.pier catch.boat catch.charter income

1 0.0503 0.2601 0.5391 7083.332

2 0.0451 0.1574 0.4671 1250.000

3 0.4522 0.2413 1.0266 3750.000

4 0.0789 0.1643 0.5391 2083.333

5 0.0503 0.1082 0.3240 4583.332

6 0.4522 0.1665 0.3975 4583.332

Four fishing modes( beach, pier, boat, charter),

two alternative specific variables (price and catch) and

one individual specific variable (income).

This data is in ”wide” shape.
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Data of multinomial response

> library(mlogit)

> data(Train)

> head(Train)

id choiceid choice price1 time1 change1 comfort1 price2 time2 change2

1 1 1 choice1 2400 150 0 1 4000 150 0

2 1 2 choice1 2400 150 0 1 3200 130 0

3 1 3 choice1 2400 115 0 1 4000 115 0

4 1 4 choice2 4000 130 0 1 3200 150 0

5 1 5 choice2 2400 150 0 1 3200 150 0

6 1 6 choice2 4000 115 0 0 2400 130 0

comfort2

1 1

2 1

3 0

4 0

5 0

6 0

There is a mix of individual and alternative specific variables:
modes?

alternative specific variables?

individual specific variables?

wide or long shape?
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Multinomial response models

P (yi = j|xij , zi, wij =G(αj + βxij + γjzi + δjwij)
i =1, . . . , n, j = 0, 1, . . . , J

i is the individual, j is the alternative

xij alternative specific variables with generic coefficient β,

zi individual specific variable with an alternative specific
coefficient γj

wij alternative specific variables with an alternative specific
coefficient δj
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Multinomial response models

What is the difference of the probability of two alternatives j, k:

P (yi = j|xi, zi, wi)
P (yi = k|xi, zi, wi)

=f ((αj − αk) + β(xij − xik)

+ (γj − γk)zi + (δjwij − δkwik) )

Individual specific variables should have alternative specific
coefficients because

If αj = αk and γj = γk then they would disappear in the
differentiation ⇒ the alternative would not be different for
different individuals.

Note that only the coefficient differences will be identified.

So if the alternatives are 1,2,3, then we assume α1 = 0,
γ1 = 0
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Multinomial response models

What is the difference of the probability of two alternatives j, k:

P (yi = j|xi, zi, wi)
P (yi = k|xi, zi, wi)

=f ((αj − αk) + β(xij − xik)

+ (γj − γk)zi + (δjwij − δkwik) )

Alternative specific variables may or may not have alternative
specific coefficients
Travel time is an alternative specific variable and 10 minutes
in a train might not have the same impact than 10 minutes in
a car. Then, we would use an alternative specific coefficient
δj .
Monetary time travel is also alternative specific variable,
however one euro spent in time travel is the same
independently of the type of transportation, so then a
constant β makes sense.
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Multinomial response models

A model with only individual specific variables is called a
multinomial logit model:

P (yi = j|zi) = G(αj + γjzi), i = 1, . . . , n, j = 0, 1, . . . , J

A model with only alternative specific variables is called a
conditional logit model:

P (yi = j|xi, wi) = G(αj + βxij + δjwij)

Note that this term is misleading.

One with both kind of variables is called a mixed logit model:

P (yi = j|xi, zi, wi) = G(αj + βxij + γjzi + δjwij)
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Multinomial Logit Model (MNL)

Model set–up

Interpretation of γj
Marginal effects of zk

Log–odd ratio

Reporting results

R command

Example
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Model for individual–specific data

y takes a value in {0, 1, 2, . . . , J}
For example y = 0, 1, 2, 3 indicating occupational choice:
private company; self–employment; academic; out of labour
force.

These values are nominal

Z is n× (k + 1) matrix of individual characteristics

For example, Z contains: 1, education, age, race and marital
status

A sample of n random draws: (yi, zi), i = 1, . . . , n from the
population

nj is the number of observations with response yi = j

The total number of observations n =
∑n

j=0 nj
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Model for individual–specific data

We are interested in the response probability:

pj = P (y = j|Z), j = 0, 1, . . . , J

We are interested in how the changes in the elements of Z
affect the probabilities of the response

Note that we need only know J of these outcomes, Why?
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Model set–up

Let us assume that there are J + 1 possible outcomes.

P (y = j|Z) =
exp(Zγj)

1 +
∑J

h=1 exp(Zγh)
, j = 1, . . . , J

where γj = (γj0, γj1, . . . , γjk), for k number of variables in Z.

Because P (y = 0|Z) + P (y = 1|Z) + . . .+ P (y = J |Z) = 1,

P (y = 0|Z) =
1

1 +
∑J

h=1 exp(Zγh)

Basically γ00 = γ01 = . . . = γ0k = 0

If J = 1⇒ we have the Binary logit model.
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Partial effects of continuous zk

The partial (marginal) effect for a continuous variable zk:

∂P (y = j|Z)

∂zk
=

exp(Zγj)γjk

h
1 +

PJ
h=1 exp(Zγh)

i
− exp(Zγj)

PJ
h=1 γhk exp(Zγh)h

1 +
PJ

h=1 exp(Zγh)
i2

=
exp(Zγj)γjkh

1 +
PJ

h=1 exp(Zγh)
i − exp(Zγj)

PJ
h=1 γhk exp(Zγh)h

1 +
PJ

h=1 exp(Zγh)
i2

=P (y = j|Z)

24γjk −
PJ

h=1 γhk exp(Zγh)h
1 +

PJ
h=1 exp(Zγh)

i
35 , j = 1, 2, . . . , J

Exercise: How is the partial effect of a continuous variable zk over
P (y = 0|Z)? (5 minutes)
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Partial effects of continuous zk

∂P (y = j|Z)
∂zk

= P (y = j|Z)

γjk − ∑J
h=1 γhk exp(Zγh)[

1 +
∑J

h=1 exp(Zγh)
]


zk is one of the variables in Z

γjk is the coefficient of zk for alternative j

The sign of the partial effect 6= sign of γjk
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Interpretation of γj: odds ratio

Odds ratio or relative risk is defined as:

P (y = j|Z)
P (y = 0|Z)

= exp(Zγj) = exp(γj0 + γj1z1 + . . .+ γjkzk)

E.g. exp(γj1) expresses how much likely (or unlikely) is event
y = j to happen than event y = 0 when z1 changes

If exp(γj1)=1 then the two events are equally likely when z1

changes

If exp(γj1) > 1 then event y = j is more likely to occur than
event y = 0
If exp(γj1) < 1 then event y = j is less likely to occur than
event y = 0
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Interpretation of γj: log-odds ratio

A simpler interpretation of γj is given by the relative probability
(the odds ratio) between two alternatives:

log
(
P (y = j|Z)
P (y = 0|Z)

)
= Zγj = γj0 + γj1z1 + . . .+ γjkzk

E.g. γj1 expresses how much likely (or unlikely) is event y = j
to happen than event y = 0 when z1 changes

If γj1=0 then the two events are equally likely when z1

changes

If γj1 > 0 then event y = j is more likely to occur than event
y = 0
If γj1 < 0 then event y = j is less likely to occur than event
y = 0
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Interpretation of γj

Also,

log
(
P (y = j|Z)
P (y = p|Z)

)
= Z(γj − γp)

If (γj1 − γp1) = 0 expresses that event y = j and y = p are
equally likely when variable z1 changes

(γj1 − γp1) > 0 expresses that event y = j is more likely than
event y = p when variable z1 changes

(γj1 − γp1) < 0 ...
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Example: Interpretation of γj

Example: 3 outcomes:

y = 0 (in school)

y = 1 (not in the school and not working, at home)

y = 2 (working)

Explanatory variables: z1=experience, z2=education

How should we interpret:

γ11 < 0 Another year of experience reduces the log–odds
between at home and enrolled in school. The probability of
event ”at home” decreases in comparison to the probability of
event ” in school” as the number of years of experience
increase

γ12 > 0 Another year of education increases the log–odds
between at home and enrolled in school.
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Maximum Likelihood Estimation of MNL

Log-likelihood for observation i is:

`i(γ) =
J∑
j=0

1[yi = j] log pj(zi, γ)

where

E.g. p2(zi, γ) = p2(zi, γ0, γ1, . . . , γJ) is the prob. that yi = 2
given zi
1[yi = 2] = 1 if yi = 2 and zero other ways,

This indicator function ”picks” the right probability for
observation i for the likelihood function

Probability of alternative j for observation i

23 / 36



Introduction MNL

Maximum Likelihood Estimation of MNL

The maximum likelihood estimator maximises the likelihood
function:

`(γ) =
n∑
i=1

`i(γ) =
n∑
i=1

J∑
j=0

1[yi = j] log pj(zi, γ)

w.r.t γ

If the ML estimation conditions are satisfied then these
estimates of MNL are

Consistent, asymptotically normal and asymptotically efficient

Same tests: Wald, LR and LM

The asymptotic variance can be estimated with any of the
three estimators we saw before

The same consequences of misspecification hold for this
estimator.
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Example 15.4 Wooldridge

status: school=1,home=2,work=3

educ, exper, expersq, black (individual specific variables)

Data from 1987

status educ exper expersq black
1 2 10 0 0 1
2 2 10 0 0 1
3 2 10 0 0 1
4 1 10 0 0 1
5 2 11 0 0 1
6 2 11 0 0 1
7 2 11 0 0 1
8 2 12 0 0 1
9 3 12 0 0 1
10 3 12 1 1 1
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R commands

Install packages mlogit

Load package mlogit

Read the data file

Make a data.frame with the variables of interest: status, educ,
exper, expersq, black, id

Convert this file in a format that mlogit can understand
(function mlogit.data)

Understand what formula you need to use

Use mlogit to estimate the model
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R commands

Read file

> keane<-read.table("keane.raw", na.string=".")

We want data from 1987 and we want to get rid of the
missing values (note .RAW file does not have headers)

From the .des file, we see that variable number 6 is educ,
variable number 19 is y87, variable number 23 is exper,
variable 24 is expersq and variable 25 is status.
> index<-which(keane[,19]!=1 | is.na(keane[,25]) | is.na(keane[,6])|

is.na(keane[,23]) | is.na(keane[,24]))

> keane<-keane[-index,]
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R commands

Create a data frame with our variables

> keane2<-data.frame(id= keane[,1],status=keane[,25],
educ=keane[,6], exper=keane[,23], expersq=keane[,24],
black=keane[,11])

Are our variables alternative specific?
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R commands

Install mlogit package

Load mlogit package

> library(mlogit)

Write the data in a format the mlogit understand

The variable exper, educ, expersq, black are individual specific

The response variable is ”status” so it goes into the
parameter ”choice”

shape: wide (one row for each alternative)
> keane3<-mlogit.data(keane2, choice = "status", shape="wide", id="id")
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R commands

How do we write the formula for mlogit to understand we are using
a multinomial logit model, a conditional logit model or a mixed
logit model?

The right hand side of the formula contains three parts:

1 alternative specific variables with generic coefficients (βxij)

2 individual specific variables with alternative specific
coefficients (γjzi, αj). By default α1 = γ1 = 0.

3 alternative specific variableswith alternative specific
coefficients (δjwij)

choice ∼ xij |zi|wij
by default αj is included unless we write 0, -1 in the middle part of
the formula.
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R commands

Examples of formula for the MNL (αj + γjZ)

choice ∼0|income|0
choice ∼0| − 1 + income|0
choice ∼0|income)
choice ∼0| − 1 + income)
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R commands

Estimate the parameters of a MNL using mlogit.

status: school=1,home=2,work=3

individual specific variables: exper, educ, expersq, black

reflevel=”1”, the one who will have parameters α1 = 0 = γ1

> keane.model<-mlogit(status~0| educ+exper+expersq+black,
data=keane3, reflevel="1")

> summary(keane.model)

32 / 36



Introduction MNL

R commands

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

2:(intercept) 10.277874 1.133336 9.0687 < 2.2e-16 ***

3:(intercept) 5.543797 1.086409 5.1029 3.346e-07 ***

2:educ -0.673631 0.069900 -9.6371 < 2.2e-16 ***

3:educ -0.314657 0.065110 -4.8327 1.347e-06 ***

2:exper -0.106215 0.173282 -0.6130 0.5399029

3:exper 0.848737 0.156986 5.4065 6.428e-08 ***

2:expersq -0.012515 0.025229 -0.4961 0.6198523

3:expersq -0.077300 0.022922 -3.3724 0.0007453 ***

2:black 0.813017 0.302723 2.6857 0.0072383 **

3:black 0.311361 0.281534 1.1059 0.2687500

---

Log-Likelihood: -907.86

McFadden R^2: 0.24327

Likelihood ratio test : chisq = 583.72 (p.value = < 2.22e-16)
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Reporting results of MNL

status: school=1,home=2,work=3
Log–odds ratios (relative to alternative status=1, it is just the
parameters)

log

„
P (status = 2)

P (status = 1)

«
=γ20 + γ21 educ+ γ22 exper + γ23 exper

2 + γ24 black

log

„
P (status = 3)

P (status = 1)

«
=γ30 + γ31 educ+ γ32 exper + γ33 exper

2 + γ34 black

E.g. for one unit change in the variable educ:

the log of the ratio of the two probabilities γ21 = −0.67,
The log of the ratio of the two probabilities γ31 = −0.31.

Therefore the probability of being at home or at work
decrease as the years of education increases.
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Reporting results of MNL

The ratio of the probability of choosing one outcome
alternative over the probability of choosing the reference
alternative is often referred as relative risk.
> exp(coef(keane.model))

alt2 alt3 alt2:educ alt3:educ alt2:exper

2.908198e+04 2.556469e+02 5.098538e-01 7.300390e-01 8.992314e-01

alt3:exper alt2:expersq alt3:expersq alt2:black alt3:black

2.336693e+00 9.875628e-01 9.256118e-01 2.254699e+00 1.365282e+00

For one unit change in the variable educ, we expect the
relative risk of choosing status = 2 over status = 1 to
decrease 0.5.

So, the relative risk is lower for more educated people.

For a dummy variable such as black: the ratio of the relative
risks of choosing status = 2 over status = 1 for black is 2.25.
So there is a higher probability to stay at home than to be at
school.
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Reporting results of MNL

Percent correctly predicted observations

In total
Separately for each of the J + 1 outcomes.

Differences in fitted probabilities between two typical (or
relevant) observations of Z

E.g. the average male and the average female person
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