PROBLEM SET 6

Problem 1 (Pooled OLS, Random Effects and Fixed Effects)

(a)

For v = 0 we have E(z;u;;) = 0. Thus, we find for n — oo
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ie. BOLS is consistent. Analogously, one finds that BGLS and BWG are consistent, i.e. all three

estimators are consistent.

The GLS estimator has the smallest asymptotic variance.

For v # 0 we have E(z;ui;) # 0, and in particular E(z}u;) # 0 and E(z;X"1u;) # 0. Thus, the
OLS and GLS estimator are NOT consistent in that case.

The WG estimator is still consistent, because x,Mu; = x;Me;, i.e. M projects out a; completely,

and therefore E(z;Mu;) = E(z;Me;) = 0. We thus have as n — oo
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Thus, only BWG is consistent.

We have E(z;u) = 0 and E(w;a;;) = 0, i.e. the regressors are exogenous, and one can also
show that they are non-collinear. Thus, the pooled OLS estimator proposed here is indeed a

consistent estimator for 5 and ~.



Problem 2 (Pooled OLS and Random Effects)

(a) As n — oo we have
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where we applied the WLLN and the fact that E(z;u;-) = 0. We have thus shown
BOLS 5 B asn — oo, i.e. consistency of f9US. The consistency argument for GO

is analogous.

(c) As n — oo we apply the WLLN and the CLT to obtain
1 - /2—1 E /2—1
” Z ;X7 x; =y B 1),
i=1

% Z X = N[0, B(2i S wui X )]
i=1
~a N[0, E(ziE ;)] .

Applying Slutsky’s theorem then gives
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By analogous reasoning one finds that
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Using the distributional assumptions on z;, €;; and «; we can express the asymptotic
variances of the estimators as follows
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We have
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Thus, BGLS has the smallest asymptotic variance.



