Problem Set 1 - Week 38, 2013

Problem 1

Consider the linear regression model

Yi = B1 + fiB2 + &,

where y; is the height of individual 4, and f; is a gender dummy, which takes
values f; = 1 for females and f; = 0 for males. We observe n; females and
nm,m males. The total sample size is n = ny 4+ n,,. Let 3y be the average of y;
in the female subsample, and ¥,, be average of y; in the male subsample. Let
x; = (1, fi), and let y be the n x 1 vector with entries y;, and X be the n x 2
matrix with rows x;.

(a)

(b)

Somebody proposes to also include a male dummy m; = 1 — f; into the
model and to estimate the regression y; = 51 + fiB2 + m;03 + ¢; by OLS.
Explain why this is problematic.

Somebody proposes to also include the square f? of the female dummy
into the model and the estimate the regressiony; = 1 + fif32 + f23 + €
by OLS. Explain why this is problematic.

Give expressions for the 2 x 2 matrix X’X and the 2 x 1 vector X'y in
terms of ny , My, yr and yp,.
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Now assume that ny = n,, = 100, that §y = 165, and that ¥,, = 175.
Calculate the OLS estimator for §; and 5.

81 =175 [y =—-10
In addition to the assumptions in (d) now also assume that Var(e;|f;) =
50. Calculate the estimated standard error for (s.
The estimated standard error of Bg is 1
Consider the null hypothesis Hy : 82 = 0. Using your results in (d) and

(e) calculate the t-test statistics for testing Hy. Would you reject Hy at
5% significance level?

Yes.

Problem 2

Hint:

Use property CE.5.



Problem 3
(a) Load the MROZ.csv data into R (can be found on blackboard)

> #Loading dataset MROZ.CSV into memory

> mroz <- read.table("MROZ.csv", header=TRUE, sep=",", na.string=".")

> # attaches variable names to dataset, allowing for calling variables individually
> #Be careful you do not override previous variables with the same name

> attach(mroz)

(b) Run some summary statistics. Are there any variables with missing val-
ues? Why might there be missing values in this (these) variables?

>  summary (mroz)

The dataset contains missing values in the wage and lwage variables. This
occurs, since the wage is observed only for those individuals who were
employed at the time of the data collection (inlf=1)

(c) Estimate the following model

log(wage) = By + Brexper + Poexper® + Bzeduc + Byage+
Bskidslt6 + Bgkidsgeb + u

with the normal standard errors, for the 428 employed women in the sam-
ple. Compare your results with Example 4.1 in Graduate Wooldridge
(2002, 2010).

> mroz.lm <- Im(lwage ~ 1l+exper+expersq+educ+age+kidslt6+kidsge6, data=mroz, x=T)
> # Displaying model estimation
> summary (mroz.lm)

Call:
lm(formula = lwage ~ 1 + exper + expersq + educ + age + kidslt6 +
kidsge6, data = mroz, x = T)

Residuals:
Min 1Q Median 3Q Max
-3.08183 -0.30631 0.04606 0.37161 2.35708

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.4209080 0.3169050 -1.328 0.18484
exper 0.0398190 0.0133930 2.973 0.00312 **
expersq -0.0007812 0.0004022 -1.942 0.05276 .

IEquation (4.16) in Wooldrige (2010,2002)



educ 0.1078320 0.0144021  7.487 4.16e-13 **x*

age -0.0014653 0.0052925 -0.277 0.78203
kidslt6 -0.0607106 0.0887626 -0.684 0.49437
kidsge6 -0.0145910 0.0278981 -0.523 0.60124

Signif. codes: 0 &AY*x*aAZ 0.001 aAY**3AZ 0.01 aAY*3aAZ 0.05 aAY.aAZ 0.1 &AY &AZ 1

Residual standard error: 0.6682 on 421 degrees of freedom

(325 observations deleted due to missingness)
Multiple R-squared: 0.1582, Adjusted R-squared: 0.1462
F-statistic: 13.19 on 6 and 421 DF, p-value: 1.057e-13

> # Visualization of the model (look for functional forms in the residuals)
> plot.lm(mroz.lm, which=1)

Residuals vs Fitted

Residuals

0220
[ 1268480

T T T
0.5 1.0 15

Fitted values
Im(lwage ~ 1 + exper + expersq + educ + age + kidslt6 + kidsge6) The red line
in your plot is a "lowess smoother” — a locally weighted polynomial regers-
sion. A sufficient curvature is a sign of either heteroskedasticity or a model
misspecification. The bptest test for heteroskedasticity.

> library(Imtest)
> bptest(mroz.lm)

studentized Breusch-Pagan test



data: mroz.lm
BP = 15.7291, df = 6, p-value = 0.01528

Estimate the model in problem 3 with heteroscedasticity robust standard
errors. Compare your results with Example 4.1.

veovHC is a function in the package sandwich which calculates the robust
standard errors of a linear model. Several types of robust standard errors
can be specified. HCO are the White’s standard errors but there are other
options. Type ? vcovHC (after loading the package sandwich) for more
details.

> library(sandwich)
> coeftest (mroz.1lm, vcov=vcovHC(mroz.lm, type="HC0"))

t test of coefficients:

Estimate Std. Error t value Pr(>|tl)

(Intercept) -0.42090796 0.31572069 -1.3332 0.183198
exper 0.03981902 0.01513251 2.6314 0.008817 **
expersq -0.00078123 0.00040632 -1.9227 0.055193 .
educ 0.10783196 0.01351167 7.9807 1.396e-14 *x**
age -0.00146526 0.00588632 -0.2489 0.803539
kidslt6 -0.06071057 0.10522938 -0.5769 0.564291
kidsge6 -0.01459101 0.02910954 -0.5012 0.616461

Signif. codes: O aA¥***3AZ 0.001 aA¥**aAZ 0.01 aAV*aAZ 0.05 &AY.aAZ 0.1 aAY &AZ 1

# As an alternative for HCO, the following command can be used. This requires package
# 'survival'

library(survival)

coeftest (mroz.1lm, vcov=sandwich)

vV V. VvV

test of coefficients:

ot

Estimate Std. Error t value Pr(>|tl)

(Intercept) -0.42090796 0.31572069 -1.3332 0.183198
exper 0.03981902 0.015132561 2.6314 0.008817 **
expersq -0.00078123 0.00040632 -1.9227 0.055193 .
educ 0.10783196 0.01351167 7.9807 1.396e-14 **x*
age -0.00146526 0.00588632 -0.2489 0.803539
kidslt6 -0.06071057 0.10522938 -0.5769 0.564291
kidsge6 -0.01459101 0.02910954 -0.5012 0.616461

Signif. codes: 0 aA¥*xxaAZ 0.001 sAY**3AZ 0.01 aA¥*sAZ 0.05 sAY.aAZ 0.1 aAY akZ 1

Write down the hypothesis that education does not affect wages in both
cases, and use the t-values from the above regressions to reach a conclusion
about the significance of education.



HO : Beque = 0,Hy : Beque # 0. Using the t-statistics from both the
standard OLS model (t=7.4872) and the model with Huber-White stan-
dard errors (t=7.9807). We reject the null-hypothesis, and conclude that
education in both model specifications significantly affect wage earnings

(f) Use the F-statistics to test the hypothesis of 54 = 85 = G = 0 as in the
example.

(f.1) Run and save the restricted regression
> mroz.restricted <- lm(lwage ~ 1+exper+expersq+educ, data=mroz)

(f.2) Use the ’anova’ command to perform the F-test: "anova(restricted_model,
unrestricted_model)”
We can also use the waldtestlmtest and the linearHypothesiscar to
perform the F-test.

> anova(mroz.restricted, mroz.lm)

Analysis of Variance Table

Model 1: lwage ™ 1 + exper + expersq + educ

Model 2: lwage ~ 1 + exper + expersq + educ + age + kidslt6 + kidsge6
Res.Df RSS Df Sum of Sq F Pr(>F)

1 424 188.31

2 421 187.99 3  0.31751 0.237 0.8705

> library(lmtest)
> waldtest (mroz.restricted, mroz.lm)

Wald test

Model 1: lwage ™ 1 + exper + expersq + educ

Model 2: lwage = 1 + exper + expersq + educ + age + kidslt6 + kidsge6
Res.Df Df F Pr(>F)

1 424

2 421 3 0.237 0.8705

> library(car)
> linearHypothesis(mroz.1lm, c("age=0", "kidslt6=0", "kidsge6=0"))

Linear hypothesis test

Hypothesis:
age = 0

kidslt6 = 0
kidsge6 = 0

Model 1: restricted model
Model 2: lwage ~ 1 + exper + expersq + educ + age + kidslt6 + kidsge6



Res.Df RSS Df Sum of Sq F Pr(>F)
424 188.31
421 187.99 3  0.31751 0.237 0.8705

#is that they allow robust F-tests
waldtest (mroz.restricted, mroz.lm,

1
2
> # As a bonus, the waldtest and linearHypotehesis commands
>
>
+ vcov=vcovHC (mroz.1lm, type="HCO"))

Wald test

Model 1: lwage ~ 1 + exper + expersq + educ

Model 2: lwage ~ 1 + exper + expersq + educ + age + kidslt6 + kidsge6
Res.Df Df F Pr(>F)

1 424

2 421 3 0.1672 0.9185

> linearHypothesis(mroz.lm, c("age=0", "kidslt6=0", "kidsge6=0"),
+ vcov=vcovHC(mroz.1lm, type="HC0"))

Linear hypothesis test

Hypothesis:
age = 0

kidslt6 = 0
kidsge6 = 0

Model 1: restricted model
Model 2: lwage ~ 1 + exper + expersq + educ + age + kidslt6 + kidsge6

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 424
2 421 3 0.1672 0.9185

The p-value of the F-test is 0.8705 we cannot reject the null-hypothesis,
i.e. we cannot reject that the coefficients on age, kidsle6 and kidsge6
can all be equal to zero

(g) Test the same hypothesis using the LM statistic

(g.1) Extract the residuals from the restricted regression

> mroz.residual= resid(mroz.restricted)
> length(mroz.residual)

[1] 428
> nrow(mroz)

[1] 753



>

(g.2) Regress the restricted residuals on the full set of explanatory variables
(including the variables you are testing)
The length of the database and the residuals is different becuase when
running the Im model, this has removed the missing values. That is
why the command below
We tell R to run the regression with the dataset without missing
values:

> Ilmtest.lm <- lm(mroz.residual ~ 1+exper+expersq+educ+age+
+ kidslt6+kidsge6, data=na.exclude(mroz))
> summary (lmtest.1lm)

Call:
Im(formula = mroz.residual ~ 1 + exper + expersq + educ + age +
kidslt6 + kidsge6, data = na.exclude(mroz))

Residuals:
Min 1Q Median 3Q Max
-3.08183 -0.30631 0.04606 0.37161 2.35708

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 1.011e-01 3.169e-01 0.319 0.750

exper -1.747e-03 1.339e-02 -0.130 0.896
expersq 2.996e-05 4.022e-04 0.074 0.941
educ 3.423e-04 1.440e-02 0.024 0.981
age -1.465e-03 5.292e-03 -0.277 0.782
kidslt6é -6.071e-02 8.876e-02 -0.684 0.494
kidsge6 -1.459e-02 2.790e-02 -0.523 0.601

Residual standard error: 0.6682 on 421 degrees of freedom
Multiple R-squared: 0.001686, Adjusted R-squared: -0.01254
F-statistic: 0.1185 on 6 and 421 DF, p-value: 0.9942

(g.3) The test statistic is then N * R% where N is the number of ob-
servations and R? is the R squared from the regression from step
b. Under the null, this is chi-squared distributed with k degrees of
freedom, where k is the number of restrictions (in this case k=3).?

> r.squared<-summary (lmtest.lm)$r.squared
> Imtest.statistic <- 428*r.squared
> pchisq(lmtest.statistic, 3, lower.tail=F)

[1] 0.8680941

2Use the pchisq(X, df=k) command to display the cumulative chi-squared distribution
function where X is the test statistic and k is the degree of freedom. The probability of the
null hypothesis is then 1-pchisq(X, df=k).



A heteroskedastic robust LM test(see page 61-64 of Wooldridge (2010))
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#

>
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>
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>
>
>
>
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>

Step a: extracting residuals from restricted regression
mroz.restricted <- Im(lwage ~ 1l+exper+expersq+educ, data=mroz)
# Creating dataset of non-missing observations
mroz.nona <- data.frame(mroz.nona, mroz.residual = resid(mroz.restricted))
Step b: Regress each of the restricted variables on the included explanatory
# variables and get residuals from these
age.lm <- lm(age ~ 1+expertexpersq+educ, data=mroz.nona)
mroz.nona <- data.frame(mroz.nona, res.age = residuals(age.lm))
kidslt6.1m <- 1m(kidslt6 ~ 1+exper+expersq+educ, data=mroz.nona)
mroz.nona <- data.frame(mroz.nona, res.kidslt6 = residuals(kidslt6.1m))
kidsge6.1lm <- 1lm(kidsge6 ~ 1+exper+expersqg+educ, data=mroz.nona)
mroz.nona <- data.frame(mroz.nona, res.kidsge6 = residuals(kidsge6.1lm))
Step c: Generate new variables being the interaction between the restricted
residuals and the residuals from the three regressions above
attach(mroz.nona)
mroz.nona <- data.frame(mroz.nona, varl = mroz.residual*res.age)
mroz.nona <- data.frame (mroz.nona, var2 = mroz.residual*res.kidslt6)
mroz.nona <- data.frame(mroz.nona, var3 = mroz.residual*res.kidsge6)
Step d: regress a unit vector on these three variables with no constant
mroz.nona <- data.frame(mroz.nona, unit = 1)
het.lm <- 1m(unit~O+varl+var2+var3, data=mroz.nona)
# The test statistic is N-SSR from this regression, which under the null is
# chisquared distributed with k degrees of freedom
# To get the SSR (sum of squared residuals) use the 'anova()' command
anova (het.1m)
het.lm.test <- 428-427.49
pchisq(het.1lm.test,3, lower.tail=F)
# Which gives us a p=0.916689, in other words, we once again cannot reject the
# null hypothesis

Plot wage-experience profiles for different education levels. Interpret them.
Simple graphics of wage-experience distributions

> mroz.nona=na.exclude (mroz)

> plot(lwage~exper, data=mroz.nona)

Graphics for each education level

>

educ.fe <- as.factor (educ)

> num <- length(unique (educ))

>

Missing rows: 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 44

coplot (lwage~exper | educ.fe, num=num)



Given : educ.fe
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> coplot(lwage~exper | educ, num=num)

Missing rows: 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 44



Given : educ
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It seems that wage increases with experience but not that much. It is
definitely not clear that the nature of the relationship between time and
experience depends on the level of education. This mean that if one were
to fit a simple regression to each panel of the coplot, would the slopes be
identical in every case?

Test the hypothesis of no effect of experience on wages (note that there is
both an ’ezper’ and ’ezpersq’ term in the regression).

> mroz.res2 <- lm(lwage~1+educ+age+kidslt6+kidsge6, data=mroz)
> mroz.unres <- Im(lwage~1l+exper+expersq+educ+age+kidslt6+kidsge6, data=mroz)
> anova(mroz.res2, mroz.unres)

Analysis of Variance Table

Model 1: lwage ~ 1 + educ + age + kidslt6 + kidsge6

Model 2: lwage ~ 1 + exper + expersq + educ + age + kidslt6 + kidsge6
Res.Df RSS Df Sum of Sq F Pr (>F)

1 423 194.45

2 421 187.99 2 6.4648 7.239 0.0008109 *x*x

Signif. codes: 0 &A¥*xxaAZ 0.001 sAY**3AZ 0.01 aA¥*aAZ 0.05 sAY.aAZ 0.1 aAY &aAZ 1
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The p-value is 0.000811, indicating that we cannot reject the null — hence
experience is significant in the model

Include an interaction term between education and experience. How would
you interpret that? Is it significant?

> educexper <- educ*exper
> mroz.lm2 <- lm(lwage~1l+exper+educ+educexper+age+kidslt6+kidsge6)
> summary (mroz.lm2)

Call:

Im(formula = lwage ~ 1 + exper + educ + educexper + age + kidslt6 +
kidsge6)

Residuals:
Min 1Q Median 3Q Max

-3.04453 -0.30960 0.05473 0.39587 2.31063

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.1029288 0.4264084 -0.241 0.809374
exper 0.0070868 0.0223833 0.317 0.751696
educ 0.1006785 0.0273595 3.680 0.000264 **x
educexper 0.0006741 0.0017560 0.384 0.701260
age -0.0035540 0.0052176 -0.681 0.496143
kidslt6 -0.0733498 0.0889922 -0.824 0.410277
kidsge6 -0.0187925 0.0281279 -0.668 0.504429

Signif. codes: 0 &aA¥*xxaAZ 0.001 sAY**3AZ 0.01 aAY*aAZ 0.05 sAY.aAZ 0.1 aAY &akZ 1

Residual standard error: 0.6711 on 421 degrees of freedom

(325 observations deleted due to missingness)
Multiple R-squared: 0.151, Adjusted R-squared: 0.1389
F-statistic: 12.48 on 6 and 421 DF, p-value: 5.863e-13

Can you make a model that fits better than the one in problem 37

> model.1lm.hours<-1lm(lwage exper+expersq+educt+hours+age+kidslt6+kidsge6, x=T)

> summary (model.lm.hours)

> model.lm.hushrs<-1lm(lwage~exper+expersq+educ+hushrs+age+kidslt6+kidsge6, x=T)
> summary (model.lm.hushrs)

> model.lm.faminc<-1m(lwage exper+expersq+educ+faminc+age+kidslt6+kidsge6, x=T)
> summary(model.lm.faminc)

> model.lm.city<-lm(lwage exper+expersq+educ+city+age+kidslt6+kidsge6, x=T)

> summary (model.lm.city)
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(1) Discuss whether assumptions OLS.1 - OLS.3 are likely to be fulfilled.
OLS1: Is the error uncorrelated with all explanatory variables? No, ed-
ucation might be well related to the ability of the person, the same with
the number of kids and the race of the person. OLS2: Perfect collenarity?
Yes OLS3: Homoscedasticity: F(e2X’X) = o2 (constant). Check plot
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