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Binary models

In many cases, the response variable, y, has only a finite and
discrete number of outcomes.

Examples:

Accept/reject a job offer

Choice of transportation mode (train, bus, car/ bicycle)

Introduce/not-introduce new software system

Being unemployed, having a job/ out of the labour force

Married/not married

Eat out/eat at home

Attend this class/don’t attend
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Binary response

We shall focus (for now) on the case with two outcomes ⇒

A binary dependent variable:

y = 1 (called the ”successful” outcome)

y = 0 (the ”failure”)

Examples:

y = 1 if the person accepts a job; y = 0 if she doesn’t

y = 1 if eating out; y = 0 if eating at home.

Thus, we define in each case what a ”success” is.
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The Linear Probability Model

y = G(Xβ) + ε = Xβ + ε

y is normal and the link function is the identity.

We are estimating the conditional mean of y given X, i.e.

E (y|X) = P (y = 1 |X) = Xβ

which is a probability, then:

β must satisfy 0 ≤ xjβ ≤ 1 for all j = 1, . . . ,n.
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Partial effects of xi in the LPM

How do we interpret βi?

It is not interpret as the ratio by which E (y|X) changes when
xi changes by one unit (holding other factors fixed).

Because y is 0 or 1, then E (y|X) ∈ [0, 1]
βi measures the change in the probability of success when xi

changes by one unit (holding other factors fixed).

For example, the probability of a woman as part of the labour
force increases by 0.038 for each year of education added.
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Partial effects of xi in the LPM

1 If xi is continuous:

∂P (y = 1 |X)
∂xi

=
∂Xβ

∂xi

2 If xi is a dummy (xij = 0, 1) or a discrete variable
(xij = 0, 1, 2, 3, . . .):

P (y = 1 |x1, . . . ,xi−1, 1,xi+1, . . . ,xk )−
P (y = 1 |x1, . . . ,xi−1, 0,xi+1, . . . ,xk )

Questions: The effect of xi is constant. Is that reasonable? If
xi = age and age2 is also in the model, what is the partial effect
of changing age?
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Disadvantages of LPM

The observed value of y is then:

y = P (y = 1 |X) + ε = Xβ + ε

It is linear, so use OLS!

The error term ε is given by:

εj = 1− xjβ with probability xjβ

εj = −xjβ with probability 1− xjβ

The errors are not normally distributed.

Their distribution depends on X and they are heteroskedastic.

The OLS estimator is unbiased because E (ε) = 0 but it is not
efficient.
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Disadvantages of LPM

The estimates of the probability of success (X β̂) can lie
outside [0, 1]. How to interpret that?

This occurs when xjβ are not in [0,1] for all j
Heteroscedasticity:

Var (ε |X) = Var (y |X) = Xβ (1−Xβ)

i.e. OLS.3 is violated. What does this mean?
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LPM and heteroscedasticity: first solution

Obtain the OLS estimator but use heteroscedasticity-robust
standard errors for the hypothesis testing:

To test individual effects

t–test with robust standard errors
In R, coeftest(model , vcov = vcovHC (model , type = ”HC 0”))

To test the joint effect of a set of variables

Wald and LM tests (robust versions) can then be used
In R, wald .test(model ,modelres , vcov =
vcovHC (model , type = ”HC 0”))
The LM test has to be programmed by yourself
For the particular case: H0 : β1 = β2 = . . . = βk = 0 we can
use the classical F-test.
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LPM and heteroscedasticity: second solution

Use Weighted Least Squares (WLS)

We know the form of the heteroscedasticity:
Var (ε |X) = Xβ (1−Xβ) .
If we divide all variables by this ⇒ transformed model is
homokedastic:

Y√
Var (ε |X)

=
X√

Var (ε |X)
β +

ε√
Var (ε |X)

⇓
Ỹ =X̃ β + ε̃
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LPM and heteroscedasticity: second solution

The transformed model is homokedastic

Var(ε̃ |X) =Var

(
ε√

Var (ε|X )

∣∣∣∣∣X
)

=
1

Var (ε |X)
Var (ε|X ) = 1

How does WLS it work in practice?
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WLS in practice

1 Run OLS on original model: y on X and obtain the fitted
values ŷ

2 Construct estimate of conditional variance of y (and ε) for
each j th observation:

σ̂2
j = xj β̂

(
1− xj β̂

)
= ŷj (1− ŷj )

3 Transform variables:

ỹj = yj /σ̂j and x̃j = xj /σ̂j

4 Regress ỹj on x̃j using OLS.

Problem: What if ỹj > 1 or ỹj < 0? I.e. predicted probability is
outside the unit interval.
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Example 15.1 Wooldridge (15 minutes)

Consider the model for woman’s labor market participation
(mroz.dat and mroz.des):

P(inlf = 1 |X) =β1 + β2 nwifeinc + β3 educ + β4 exper

+ β5 exper2 + β6 age + β7 kidslt6 + β8 kidsge6

Estimate by LPM

LPM with heteroskedasticity-robust se

WLS

Interpret the results.

How should we interpret the parameter β2? Is the effect of
nwifeinc important?

What about kidslt6?

Are there any fitted probabilities outside [0,1]?

Do the robust se are any different?
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Introduction

Generalised Linear Models

Index Models
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Generalised Linear Models (GLM)

Generalised linear models are an extension of the MLR allowing for:

non–normal distribution of the response y

non–linear relationship between the E (y|X) and X

The GLM unify the MLR, Logit and Probit models... and more.
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Generalised Linear Models (GLM)

The basic elements of the GLMs are:

y = G(Xβ) + ε, E (ε|X) = 0

1 y follows an exponential distribution
Normal, Exponential, Gamma, Poisson and Binomial

2 The mean value E (yj |X) = G(xjβ) = µj is a function of the
linear predictor ηj which is:

ηj = β0 + β1x1j + . . .+ βkxkj

3 The relationship between µj and ηj is defined by the link
function, g : ηj = g(µj ) or µj = g−1(ηj ) = G(ηj )

The link function is smooth and invertible

4 We are interested in estimating G(Xβ) (the conditional mean
of y)
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Example

Given a MLR: yj = β0 + β1x1j + . . .+ βkxkj + εj

If εj ∼ N (0, σ2) ⇒ yj ∼ N (µj , σ
2) - normal response

The conditional mean is: µj = β0 + β1x1j + . . .+ βkxkj

Clearly the link function g(u) = u is the identity function,
g−1(u) = G(u) = u

⇓

The mean of MLR

E (yj |X ) = µj = g−1(ηj ) = G(ηj ) = ηj = β0 + β1x1j + . . .+ βkxkj

⇓

The MLR is a type of GLM with a normal response and the
identity as link function
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Links for responses in GLM

The combination of the distribution of the response y and a
link function is called the family of the GLM.

In the example, the combination of normal with the identity
function is the MLR

Each response distribution can be combined with a variety of
links

Only certain combinations are natural or canonical
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Links for responses in GLM

Response/error distribution Canonical link Mean
Normal/Normal identity: g(µ) = µ G(η) = η

Binomial/Normal probit: g(µ) = Φ−1(µ) G(η) = Φ(η)

Binomial/logistic logit: g(µ) = log
(

µ

1− µ

)
G(η) = eη

1+eη

Poisson log: g(µ) = log(µ)

Gamma inverse: g(µ) =
1
µ
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Exercise ( 3 minutes)

Assume yj is a discrete binary variable that takes values 0 and
1 only. What is the expression of µj = E (yj |X)?

Assume the logit function as the link function:

g(u) = log
(

u
1− u

)
Is this function g smooth? and invertible?

Find the inverse, µj = g−1(ηj ). Hint: write the function as
ηj = . . .

The inverse is the logistic distribution
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How do we define a model for y

We are modelling the conditional mean:

E (y |X) = E (y |x1, . . . ,xk ) = G(Xβ)

which for a binary y is:

E (y |X) = 1 · P (y = 1 |X) + 0 · P (y = 0 |X) = P (y = 1 |X)

Therefore, we are estimating the probability of success:

P(y = 1 |X) = P(y = 1 |x1, . . . ,xk )

and the effect of xi on this probability.
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Binary Model

As we have seen the probability of success depends on the values
of X.

P(y = 1 |X) = E (y |X) = G(Xβ)

Show:
Var (y |X) = G(Xβ)(1−G(Xβ))

Hint: Var (y |X) = E
(
Y 2 |X

)
− [E (y |X)]2
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How to estimate P (y = 1 |X) = E (y |X)?

1 Use OLS on the model with a binary response.

the Linear Probability Model (LPM)
Simple model, but it has a number of problems: the most
important is that fitted values might be < 0 or > 1.

2 Alternative: The ”index models”

Logit model: G(Xβ) =
eXβ

1 + eXβ

Probit model: G(Xβ) = Φ(Xβ)
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Index Models

Main problem of the LPM:

P(y = 1 |X) = Xβ can take values outside unit interval

Hard to interpret

Creates problems for WLS

Solution: Use an index model:

P(y = 1 |X) = G(Xβ)

where G is function of Xβ that takes values between 0 and 1, for
example a c.d.f.
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Index Models

Two popular choices of G :

G(Xβ) = Λ(Xβ) = exp(Xβ)
1+exp(Xβ) ⇒ logit model

G(Xβ) = Φ(Xβ) =
∫ Xβ

−∞
φ (z ) dz ⇒ probit model

Instead of G(Xβ) = Xβ ⇒ PLM
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Exercise(3 minutes)

If Xβ = β0 + β1x1 + β2x2

Write the probit and logit models P(y = 1|X) =?

If the estimate β̂
logit

= (0.2, 0.5, 1)′ What is the estimated
probability of success for the individual with (x1 = 2,x2 = 3)?

If the estimate β̂
probit

= (0.125, 0.3, 0.6)′ What is the
estimated probability of success for (x1 = 2,x2 = 3)?
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Comparison of probit and logit G
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Logit

The variable y has values 0 and 1, then E (y|X) = G(Xβ) ∈ [0, 1].

Choose G as a cumulative distribution function, then this is
satisfied. For example:

G(Xβ) =
eXβ

1 + eXβ
,

the logistic cumulative distribution function.

In R:

my .model = glm(y ∼ x1 + x2 + .., data = mydata, family = binomial)
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Probit

A popular choice is
G(Xβ) = Φ(Xβ)

because the normal cumulative density function is from the
exponential family and behaves well.

⇓

Probit Model

In R:

my .model = glm(y ∼ x1 + x2 + .., data = mydata,
family = binomial(”probit”))
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Marginal effects of xi on probabilities

xjβ for j = 1, . . .n is the strength of the stimulus for the outcome
yj = 1 because

P(yj = 1) = G(xjβ)→ 1 if xjβ →∞
P(yj = 1) = G(xjβ)→ 0 if xjβ → −∞

All the values are in the [0,1] interval

Large X will imply a high probability of success

Small X will imply a low probabily of success
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Marginal effects of xi on probabilities

The marginal effect of a linear continuous xi is

∂P(y = 1|X)
∂xi

= G ′(Xβ)
∂Xβ

∂xi

The effect depends on our sample X, non-constant.

For the logit and probit, G ′(u) > 0 for all u, therefore the
sign of the parameter estimate is the sign of the effect.

This means that the largest effect of xi occurs for
observations with Xβ around the mean of the distribution G
(usually zero).

The relative effect is the same than the OLS relative effect,
independent of the sample,

∂P(y = 1|X)/∂xi

∂P(y = 1|X)/∂xk
=
βi

βk
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Marginal effects of xi on probabilities

Remember how to calculate the derivative of G . This is useful for
the nonlinear continuous variables:

∂(G(Xβ))
∂xi

= G ′(Xβ) · ∂(Xβ))
∂xi

For example, if we have the fitted model:

P(y = 1|X) = G(β0 + β1age + β2age2 + β3educ)

What is ∂(G(Xβ))
∂age ?

Q: Think about the marginal effect of interaction variables
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Marginal effects of xi on probabilities

The marginal effect of a binary xi is

G(β0 + β1x1 + βi−1xi−1 + βi + βi+1xi+1 + . . .+ βkxk )
−G(β0 + β1x1 + βi−1xi−1 + 0 + βi+1xi+1 + . . .+ βkxk )

Change on the probability of success when we go from one
event to other

The sign of the parameter will be the sign of the effect

Ex. if xi = 1 for male and the dependent variable is an
employment indicator, the marginal effect will measure the
change

34 / 52



Introduction Binary Models Applications

Marginal effects of xi on probabilities

The marginal effect of a discrete xi (for example number of kids)
is:

G(β0 + β1x1 + βi−1xi−1 + βim + βi+1xi+1 + . . .+ βkxk )
−G(β0 + β1x1 + βi−1xi−1 + n + βi+1xi+1 + . . .+ βkxk )

Change on the probability of success when going from n to m
kids
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Average Marginal Effects of xi

The marginal effects has n values, how do we report this?

Partial effect at average (PEA). Take X̄ and report

G ′(X̄β) · ∂(X̄β))
∂xi

Problems if any value if X is nonlinear such as log(income) or
age2 because then we are using ¯log(income) and ¯age2 instead
of log( ¯income) and ¯age2

Problems also using the average of dummy variables

Instead use APE, median, quantiles or a particular type of
person
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Average Marginal Effects of xi

What is the APE?

marginal effectij = G ′(xjβ)
∂(Xβ))
∂xi

This called Average Partial Effect of xi or Mean Marginal Effect:

1
n

n∑
j=1

marginal effectij

We can report the marginal effect of the average value of xi
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Marginal effects of xi

The logit and probit have both symmetric density functions
(G ′) but as we saw the logit has fatter tails and larger mean.

If xjβ = 0 for a given observation j :

Logit marginal effect of xi= 0.25 *βlogit
i

Probit marginal effect of xi= 0.40*βprobit
i

βlogit
i ≈ 1.6βprobit

i will result in the same marginal effects
around Xβ.

This is a good check of your results which should hold if you
run both models
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Comparison of probit and logit models

Both the logistic and standard normal densities have mean
zero, both are unimodal and symmetric.

The standard deviation is constant, 1 for the normal and
π/
√

3 ≈ 1.8 for the logistic. (graphics)

Compared to the probit model, the logit model has marginal
effects that are somewhat larger around the mean and in the
tails

But smaller marginal effects in between the mean and the tails

What model to choose? No strong reasons for one of the other

In the logit model, the cumulative distribution has an
analytical closed-form
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Exercise (15 minutes)

Using the same data set than before, go through Example 15.1
(Married Women’s Labor Force Participation) with the probit and
logit... compare with the OLS results.

Do model.probit and model.logit

Compare the signs and statistical significance of coefficients

Divide the coefficients of the logit by 4 and the probit by 2.5
to compare them with the LPM coefficients

fitted(model)
How many estimates fitted(y) > 0.5
Create a prediction variable y2 = 1 if fitted is greater than 0.5

40 / 52



Introduction Binary Models Applications

Application of Index Models in Economics

Latent variable problem

Random utility model
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Latent variable model

Assume the following model for an underlying (unobserved)
variable:

y∗ = Xβ + ε

Note: The latent variable is linear and possibly continuous

y = 1 if y∗ > 0
y = 0 if y∗ < 0

We have the binary model

y = G(Xβ) + ε
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Example

y∗ is the Net Present Value (NPV) of an investment.

NPV is an indicator of how much value an investment or project
adds to the firm. We would like to decide whether a certain
investment should be carried out.

y∗ y
NPV > 0 1
NPV ≤ 0 0

We want to estimate the probability of success y = 1 after knowing
certain properties of the investment which are expressed in X
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Latent variable model

y = G(Xβ) + ν

where:

E (ε|X) = 0
X is exogenous, independent of ε

The c.d.f G is from an exponential family and symmetric
around zero ⇒ G(Xβ) = 1−G(−Xβ).

Then:

P (y = 1 |X) =P (y∗ > 0 |X ) = P (Xβ + ε > 0 |X)
=P (ε > −Xβ |X) = P (ε < Xβ |X)
=G (Xβ)
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Latent variable model

Case 1: ε has a standard logistic distribution, then:

P (y = 1 |X) = P (ε < Xβ |X) = G (Xβ) = Λ (Xβ) =
exp (Xβ)

1 + exp (Xβ)

and we have the logit model.

Case 2: If ε ∼ N (0, 1), then:

P (y = 1 |X) = P (ε < Xβ |X) = G (Xβ) = Φ (Xβ) =
∫ Xβ

−∞
φ (ε) dε

and we have the probit model.
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Latent variable model

Subcase: If ε ∼ N
(
0, σ2

)
where σ 6= 1 ⇒ ε/σ is standard

normal, and:

P (y = 1 |X) = P (ε < Xβ |X )

= P
(

ε

σ
< X

β

σ

∣∣∣∣X)
= Φ

(
X

β

σ

)
= Φ

(
X β̃

)

Again, we have the probit, but this time with parameter β̃ = β/σ.
Hence, in this case, only β/σ is identified – not β
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Latent variable model

Intuition:
Consider the following two latent models (where ε ∼ N (0, σ2)):

y∗ = Xβ + ε

y∗

σ
= X

β

σ
+

ε

σ

y∗ > 0 ⇔ y∗/σ > 0.

The two models are observationally equivalent (same value y)
⇒ We can never know which model is ”true”.

The first has parameters β and σ. The second has parameters
β/σ and 1 ⇒ all we can infer from observing y is β/σ. To
recover β, we must assume a value for σ.

We get estimates of β/σ.
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Additive random utility model

A consumer chooses between the alternatives 0 and 1 according to
which has the higher satisfaction or utility (e.g. choice between
car=0 and train=1)

y∗0 = Xα0 + ε0

y∗1 = Xα1 + ε1

y∗k = ”utility” of alternative k
X = observable individual characteristics, e.g. income,
closeness to railway, etc.

ε’s: random components of the utility

The alternative with higher utility is chosen.
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Additive random utility model

Decision rule:

y∗1 > y∗0 ⇔ y∗1 − y∗0 > 0 ⇒ take the train (y = 1)
y∗1 < y∗0 ⇔ y∗1 − y∗0 < 0 ⇒ take the car (y = 0)

then:

y∗1 − y∗0 =Xα1 + ε1 − (Xα0 + ε0)
=X (α1 − α0) + (ε1 − ε0)
⇓

y∗ =Xβ + ε

where:

y∗ = y∗1 − y∗0, β = α1 −α0, ε = ε1 − ε0
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Additive random utility model

Decision rule:

y∗ > 0 ⇒ take the train ⇒ y = 1
y∗ < 0 ⇒ take the car ⇒ y = 0

where:
y∗ = (α1 −α0) X + (ε1 − ε0) = Xβ + ε

If ε1 and ε0 are independently normally distributed with mean 0
and variances σ2

0 and σ2
1 ⇒ ε is normal with variance

σ2 = σ2
0 + σ2

1 ⇒ σ =
√
σ2

0 + σ2
1
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Additive random utility model

P (y = 1 |X) =P (y∗ > 0 |X ) = P (ε < Xβ |X)

=P
(

ε

σ
< X

β

σ

∣∣∣∣X) = Φ
(

X
β

σ

)
= Φ

(
X β̃

)
where β̃ = β/σ = (α1 − α0)/

√
σ2

1 + σ2
0. We have a probit with

parameter vector β̃
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Summary

A binary dependent variable : y = 1 or y = 0 which we model by

P (y = 1 |X)

using:

A) LPM: P (y = 1 |X) = Xβ

Easy to estimate, but hard to interpret
Problems with heteroscedasticity

B) An index model: P (y = 1 |X) = G (Xβ) ∈ (0, 1)
Models are non-linear ⇒ more complicated partial effects
Two popular version: Probit (G = Φ) and Logit (G = Λ)
Can be motivated by, e.g, a latent variable model or a random
utility model

How do we estimate the index models?
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