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Example: School performance and school size (UG)

Call:

lm(formula = maths ~ 1 + compensation + staff + enrolled, data = mydata)

Residuals:

Min 1Q Median 3Q Max

-22.235 -7.008 -0.807 6.097 40.689

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.2740214 6.1137938 0.372 0.710

compensation 0.0004586 0.0001004 4.570 6.49e-06 ***

staff 0.0479199 0.0398140 1.204 0.229

enrolled -0.0001976 0.0002152 -0.918 0.359

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 10.24 on 404 degrees of freedom

Multiple R-squared: 0.05406, Adjusted R-squared: 0.04704

F-statistic: 7.697 on 3 and 404 DF, p-value: 5.179e-05
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Example: School performance and school size (UG)

Figure: Plot of residuals vs enrolled
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Violation of OLS.3

3 OLS. 3 E(ε2|X) = σ2h(X) 6= σ2. Heteroskedasticity: the
variance of the errors depends on X.

The value of the asymptotic variance of β̂ is changed.
Luckily, the consistency of the estimator is preserved, as well
as the asymptotic normality.
Solution: WLS, or use robust standard errors for the tests.

Consequences of heteroskedasticity:

The OLS β̂ is consistent, linear, however inefficient.

The V̂ ar(β̂) is biased. So the t-test and F-test are not
reliable.
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Heteroskedasticity

A simple example:

earnings = β0 + β1 male+ ε male =
{

1 if male
0 if female

What is the average earnings of a female?

β0

What is the average earnigns of a male? β0 + β1

A priori, could there be heteroskedasticity in this example? It is
common to find both men and women earning the low salaries but
there are not as many women earning high salaries. So one would
expect less variance in the earnings of females ⇒
Heteroskedasticity
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Heteroskedasticity

Because we assume E(ε|X) = 0

V ar(ε|X) = E(ε′ε|X) =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
. . . . . .
0 0 . . . σ2

n

 = Ω

Those individuals j that are females will have a different income
variance than those who are males.

So V ar(ε|X) depends on the variable X.
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Heteroskedasticity

From the proof of asymptotic normality:

√
n(β̂ − β) = (

1
n
X ′X)−1(

√
n

n
X ′ε)

We are interested in the asymptotic behaviour and we know that
plim 1

nX
′X = E(X ′X) = Σ.

Similarly, plim 1
nX
′εε′X = Ω

We know that E(β̂) = β + something asymptotically zero.

So the asymptotic variance of
√
n(β̂ − β) is:

plim

(
1
n
X ′X

)−1( 1√
n
X ′ε

1√
n

ε′X

)(
1
n
X ′X

)−1

=

Σ−1ΣΩΣ−1 = ΩΣ−1
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Heteroskedasticity

If the error term is homokedastic

Ω = σ2I

so we find the standard errors by estimating σ2 by s2.

Otherwise, we have to estimate each element of Ω

File Cov HC.pdf describes the most common estimators.
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Solving heteroskedasticity: solution I, robust se

The variance of the OLS estimator is

V ar(β̂) = E
[
(β̂ − E(β̂))(β̂ − E(β̂))′

]
= E

[
(β̂ − β)(β̂ − β)′

]
= E

[
(X′X)−1X′εε′X(X′X)−1

]
We have something difference from σ2 in the blue term and
therefore the variance is not correctly estimated by OLS.

The robust standard errors are the square roots of the
diagonal of the matrix above

We can the perform a heteroskedasticity-robust t-test
H0 : βi = 0:

T =
β̂i

robust standard error of β̂i
∼ tn−k−1
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Solving heteroskedasticity: solution I, robust se

The F-test is not accurate in presence of heteroskedasticity.

Instead we can use other tests like the Wald and the LM tests.

Matrix form notation of the null hypothesis:

H0 : Rβ = r

H1 : H0 is not satisfied

R is a q × (k + 1) matrix

β is a (k + 1)× 1 vector

r is a q × 1 vector.
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Solving heteroskedasticity: solution I, robust se

Example:

yj = β0 + β1X1j + β2X2j + β3X3j + β4X4j + β5X5j + εj

and we want to test the restrictions H0 : β2 = 0, β5 = 0. There
are q = 2 restriction, the hypothesis:

(
0 0 1 0 0 0
0 0 0 0 0 1

)
︸ ︷︷ ︸

R

β︷ ︸︸ ︷

β0

β1

β2

β3

β4

β5

 =
(

0
0

)
︸ ︷︷ ︸

r

H0 : Rβ = r
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Solving heteroskedasticity: solution I, robust se

The test statistics:

(Rβ̂ −Rβ)′(RV̂R′)(Rβ̂ −Rβ) ∼a χ2
q

where V̂ is the estimated asymptotic variance of β̂.
Intuition proof:
The distribution of the OLS estimator:

β̂ ∼ N(β, V̂)⇒ Rβ̂ ∼ N(Rβ,RV̂R′)

The test statistics:

W = (Rβ̂ −Rβ) = (Rβ̂ − r) ∼ N(0,RV̂R′)

Exercise: Dividing the Wald test statistics by its variance, obtain
the F − test expression when you assume homokedasticity
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Exercise (30 minutes)

Example HypTesting.pdf
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Possible violations of the OLS assumptions

2 OLS.2 Rank E(X′X) < k + 1 fails: the number of normal
equations is less than the number of parameters β

Consequence: the parameters cannot be identified, we cannot
find an unique solution
Solution: identify the dependent variables in X and remove
them from the model
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Multicollinearity

Perfect multicollinearity appears when one regressor is a
perfect linear combination of the other regressors.

It is impossible to identify all the parameters
The software will not give us an answer.

Imperfect multicollinearity appears when one regressor is very
highly correlated with the other regressors

We can estimate the parameters but some might be imprecise.
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Multicollinearity: Examples

We include a variable fraction and the same values in
percentage. For example: the fraction of foreigners in class
5/50 = 1/10 and the percentage 10%.

Solution: remove one of them.

The dummy variable trap. We include a dummy variable to
indicate male and another one to indicate female.

Solution: if we have G categories of a variable, only creat
G− 1 dummy variables

We assume our data set has male and female individuals and
we would like to categorise them diffeincomely. We include
only one dummy variable to avoid de dummy variable trap. If
by chance our set does not have any females, we are creating
multicollinearity
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Sources of endogeneity

We are interested in dealing with the problem of endogeneity.

A variable is endogenous when it depends of other variables,
and therefore it can be explained by then, or when it is
correlated with the error ε.

So if E(Xjε) = cov(Xj , ε) 6= 0 ⇒ Endogeneity.

If the model cannot be changed to remove the endogeneity,
then the OLS main condition for consistency is not satisfied.

Result: inconsistent OLS estimators
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Sources of endogeneity

Three common causes of endogeneity:

Omission of relevant regressors.
Measurement errors. It occurs when Y or certain variables Xj

are erratically observed.
Simultaneous causality. This occurs when one or more
regressors are determined simultaneously with the dependent
variable Y .
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Outline

Omitted variables

Consequences: Biased and inconsistent OLS estimator
Solution: Proxy variables or instrumental variables (IV)

Measument errors

Consequences: Biased and inconsistent estimators
Solution: IV

Simultaneity

Consequences: Biased and inconsistent estimators
Solution: IV

A more general solution:

2SLS estimator and its properties
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Source of Endogeneity: Omitted Variables

Solution I: Proxy variables

Solution II: If we cannot find good proxy variables ⇒ IV

Definition of instrument

IV estimator (there is only one instrument per endogenous
variable)

Do not just too quickly
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Omitted variables

Let assume that the correctly specified model looks like:

Y = Xβ + γ q + ε = β0 + β1X1 + . . . βkXk + γq + ε

However as q is unknown and we estimate the incorrect model:

Y = β0 + β1X1 + . . . βkXk + η

where
η = qγ + ε

Let assume Xk is correlated with q, then cov(Xk, η) 6= 0
OLS condition is not satisfied.

25 / 74



Reminder Multicollinearity Omitted Variables Measurement Error Simultaneity 2 Stages Least Squares

Omitted variables

The OLS estimator of the incorrect model is:

β̂inc =(X ′X)−1X ′Y = (X ′X)−1X ′ (Xβ + γq + ε)

=β + (X ′X)−1X ′ q γ + (X ′X)−1X ′ε

Therefore, unless the regressors Xk and q are orthogonal and
therefore X ′q = 0, we have that β̂inc is biased:

E(β̂inc) = β + (X ′X)−1X ′ q γ

and inconsistent

plim(β̂inck ) = βk + γ
cov(Xk, q)
V ar(Xk)
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Omitted variables: solutions

First and more intuitively, if q is unknown, find a variable that
explains it but it is known: proxy variable (z).

If this does not work, use an instrument to scoop the
endogeneity out of the endogenous variable.
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Omitted variables: proxy variables

There is an economic theory that says that the expected wage
depends on the education, experience and ability. So we should
have something like

log(wage) =β0 + β1 exper + β2 educ+ γ ability + ε (1)

but ability is unobservable.

So if we estimate

log(wage) =β0 + β1 exper + β2 educ+ η (2)

because E(educ ability) 6= 0 then E(educ η) 6= 0 and

β̂ is inconsistent and biased.
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Omitted variables: proxy variables

variable name variable type variable label
wage int monthly earnings
hours byte average weekly hours
iq int IQ score
kww byte knowledge of world work score
educ byte years of education
exper byte years of work experience
tenure byte years with curincome employer
age byte age in years
married byte =1 if married
black byte =1 if black
south byte =1 if live in south
urban byte =1 if live in SMSA
sibs byte number of siblings
brthord byte birth order
meduc byte mother’s education
feduc byte father’s education
lwage float log(wage)
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Omitted variables: proxy variables

Let us look at Example 4.3 of Wooldridge (page 65) and run the
regression using IQ as the proxy variable of ability.

> data<-read.table("nls80.txt", header=T, na=".")

> names(data)

[1] "wage" "hours" "iq" "kww" "educ" "exper"

"tenure" "age" "married" "black" "south" "urban"

"sibs" "brthord" "meduc" "feduc" "lwage"

> lwage.1<-lm(lwage~exper+tenure+married+south+urban+black+educ,data=data)
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Omitted variables: proxy variables

> summary(lwage.1)

Call:

lm(formula = lwage ~ exper + tenure + married + south + urban +

black + educ, data = data)

Residuals:

Min 1Q Median 3Q Max

-1.98069 -0.21996 0.00707 0.24288 1.22822

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.395497 0.113225 47.653 < 2e-16 ***

exper 0.014043 0.003185 4.409 1.16e-05 ***

tenure 0.011747 0.002453 4.789 1.95e-06 ***

married 0.199417 0.039050 5.107 3.98e-07 ***

south -0.090904 0.026249 -3.463 0.000558 ***

urban 0.183912 0.026958 6.822 1.62e-11 ***

black -0.188350 0.037667 -5.000 6.84e-07 ***

educ 0.065431 0.006250 10.468 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.3655 on 927 degrees of freedom

Multiple R-squared: 0.2526, Adjusted R-squared: 0.2469

F-statistic: 44.75 on 7 and 927 DF, p-value: < 2.2e-16
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Omitted variables: proxy variables

> lwage.2<-lm(lwage~exper+tenure+married+south+urban+black+educ+iq,data=data)

> summary(lwage.2)

Call:

lm(formula = lwage ~ exper + tenure + married + south + urban +

black + educ + iq, data = data)

Residuals:

Min 1Q Median 3Q Max

-2.01203 -0.22244 0.01017 0.22951 1.27478

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.1764390 0.1280006 40.441 < 2e-16 ***

exper 0.0141458 0.0031651 4.469 8.82e-06 ***

tenure 0.0113951 0.0024394 4.671 3.44e-06 ***

married 0.1997644 0.0388025 5.148 3.21e-07 ***

south -0.0801695 0.0262529 -3.054 0.002325 **

urban 0.1819463 0.0267929 6.791 1.99e-11 ***

black -0.1431253 0.0394925 -3.624 0.000306 ***

educ 0.0544106 0.0069285 7.853 1.12e-14 ***

iq 0.0035591 0.0009918 3.589 0.000350 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.3632 on 926 degrees of freedom

Multiple R-squared: 0.2628, Adjusted R-squared: 0.2564

F-statistic: 41.27 on 8 and 926 DF, p-value: < 2.2e-16
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Omitted variables: proxy variables

model β0 exper tenure married south urban black educ iq
No IQ 5.40 0.014 0.012 0.199 -0.091 0.184 -0.188 0.065
W IQ 5.18 0.014 0.011 0.2 -0.08 0.182 -0.143 0.054 0.0036

Questions:

What variables is IQ correlated with?

Why is the effect of education smaller when IQ is included?

How much of the variation of log(wage) is explained by IQ?

Is IQ a good proxy variable?
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Omitted variables: proxy variables

z is a proxy variable of the omitted q variable, if the following two
requirements are satisfied:

1 The proxy variable (z) should be redundant

E(log(wage)|X, q, z) = E(log(wage)|X, q)
Example: The wage does not depend on the IQ. The variable
IQ controls for ability and educ.

2 It should explain all the effect of ability over the other
regressors.

ability = δ0 + δ1X1 + . . .+ δkXk + ρ z + ν, then
δ1 = δ2 = . . . = δk = 0, ρ 6= 0. Once z is taken into account
then X is not related to q.
Example: Once IQ is accounted for, then educ is not
correlated with ability
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Omitted variables: proxy variables

If conditions 1 and 2 are satisfied : Including z in the regression
(endogeneity is gone) ⇒ OLS estimators are consistent and
asymptotically normal.

If condition 2 is not satisfied: z is an imperfect proxy (still
endogenous model) ⇒ the OLS estimators are inconsistent.
Solution: Instrumental Variables.

Even if the proxy is imperfect, including it might still:

Reduce asymptotic bias of estimators

Reduce variance of estimators

Also there could be more than one proxy for each variable.

Exercise: Run the regression including iq and kww.
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IV for Omitted Variables

We have the MLR

Y = β0 + β1X1 + . . .+ βk−1Xk−1 + βkXk + ε

such that

E(ε) = 0,

cov(Xj , ε) = 0 for j = 1, . . . , k − 1 but

cov(Xk, ε) 6= 0 ⇒ Endogenous variable

It might not be possible to remove the endogeneity of Xk with
proxy variables, then so we use an instrument z for Xk in our
model.
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What is an instrument?

An instrument or an instrumental variable for Xk is an observable
variable z not included in the model that satisfies:

1 Relevant: Xk is partially correlated with z once the effects of
the other exogenous variables is removed.

Xk = δ0 + δ1X1 + . . .+ δk−1Xk−1 + π1 z + η (reduced eq)
H0 : π1 6= 0

2 Exogenous: cov(z, ε) = 0: z is exogenous and uncorrelated
with the omitted variables

Difficult to prove. It is assumed by definition of the economical
model or tested with other proxy variable of the omitted
variable.
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IV for Omitted Variables

Substitute the reduced equation into the main equation:

Y = α0 + α1X1 + . . .+ αk−1Xk−1 + λ1 z + ν

where ν = ε+ βkη and αj = βj + βkδj and λ1 = βkπ1

All the variables of this model are uncorrelated with ν and
therefore the OLS estimates α̂j , λ̂1 are consistent.
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The IV estimator

The initial model

Y = Xβ + ε with Xk endogenous

Let

Z =


1 X1,1 . . . Xk−1,1 z1
1 X1,2 . . . Xk−1,2 z2
...

...
1 X1,n . . . Xk−1,n zn


The consistent IV estimator is:

β̂IV = (Z ′X)−1Z ′Y
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Education example

In the example:

log(wage) = β0 + β1 educ+ ε,

where cov(educ, ε) 6= 0 because educ is correlated with ability.

We should find an instrumental variable z for edu that is:

Relevant: correlated with educ

Exogenous: uncorrelated with ability

Question: Is IQ a good instrumental variable for educ?
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IV for edu

Possible instrumental variables z for educ may be:

z = last digit of the social security number?

z = IQ?

z = mother’s education?

z = number of siblings?

Hint: Is z correlated with educ? And with ability?
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IV for edu

Possible instrumental variables z for educ may be:

z = last digit of the social security number? it satisfies
cov(z, abil) = 0. However, cov(z, educ) = 0. Therefore, it
cannot be an instrumental variable.

z = IQ?

z = mother’s education?

z = number of siblings?
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IV for edu

Possible instrumental variables z for educ may be:

z = last digit of the social security number? it satisfies
cov(z, abil) = 0. However, cov(z, educ) = 0. Therefore, it
cannot be an instrumental variable.

z = IQ? it is correlated with ability so it cannot be an
instrumental variable.

z = mother’s education? cov(z, educ) > 0, however it might
happen that the mother’s education influences the ability of
the son in his early education: cov(z, ability) 6= 0.

z = number of siblings?
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IV for edu

Possible instrumental variables z for educ may be:

z = last digit of the social security number? it satisfies
cov(z, abil) = 0. However, cov(z, educ) = 0. Therefore, it
cannot be an instrumental variable.

z = IQ? it is correlated with ability so it cannot be an
instrumental variable.

z = mother’s education? cov(z, educ) > 0, however it might
happen that the mother’s education influences the ability of
the son in his early education: cov(z, ability) 6= 0.

z = number of siblings? The academic education decreases as
the number of siblings increases: cov(z, educ) < 0. If we
assume no correlation between n. of siblings and ability, then
z could be used as an IV.
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Example 5.1 of Wooldridge

Angrist and Krueger (1991) choose the dummy variable, birth in
first quarter of the year, as the IV for education.

It is clearly uncorrelated with ability

Is it related with education?

The t-test is not very convincing

The main idea behind this example is to show that it can be
difficult to find an IV too.
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Are instruments of education useful?

Carneiro and Heckman (2002) argue that they are either not
exogenous or weak instruments for education (CH table).

First column shows the estimated correlation between the
instrument and education. If low (compared to the standard
error in paincomeheis), then the instrument is week

Second column shows the correlation between the instrument
and (unobserved) ability. If high (compared to standard
error), instrument is not exogenous.

Implications? Estimates of the education parameter can be
severely biased and highly imprecise.
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Source of Endogeneity: Measurement Error

The dependent variable is erratically measured.

Because this error is uncorrelated with the regressors ⇒ OLS is
fine

One of the regressors is erratically measured.

If the error is uncorrelated with true variable ⇒ OLS is fine
If the error is correlated with the true variable, then we need
an IV

49 / 74



Reminder Multicollinearity Omitted Variables Measurement Error Simultaneity 2 Stages Least Squares

Measurement error in the dependent variable

Let define the correctly specified model:

y? = β0 + β1X1 + . . . βkXk + ε

We only observe y = y? + e0, then the incorrect model:

y = β0 + β1X1 + . . . βkXk + ε+ e0︸ ︷︷ ︸
η

If E(Xjη) = 0 for j = 1, . . . , k
(No correlation between regressors and committed error, e0)

⇒ the OLS estimators are consistent.
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Measurement error in the dependent variable

Example:

Beer consumption = β0 +β1 income+β2 student+β3 price+ ε

We do a self-answered survey. We might get a measurement error
in the variable Beer consumption?, the ”bragging” effect,
underestimation, etc.

People who never drinks will often report right results. So
e0 = 0.

People who drink, might not report right results: correlation
between Beer consumption? and e0
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Measurement error in a regressor

Let us assume that X?
k is the true value of this regressor. However,

we observe Xk = X?
k + ek (for example beer price).

The correctly specified model:

y = β0 + β1X1 + . . . βkX
?
k + ε

The incorrect model:

y = β0 + β1X1 + . . . βkXk + ε+ ek︸ ︷︷ ︸
η
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Measurement error in a regressor

Assume E(ek) = 0. Otherwise βkek is added to the intercept.

Case 1 : cov(Xk, ek) = 0, no endogeneity in our model.

The OLS estimators are consistent with greater
variance due to the error

Case 2 : cov(X?
k , ek) = 0

The true variable is uncorrelated with the error,
but the variable we use it is:

cov(Xk, ek) = E(Xkek) = E(X?
kek)+E(e2k) = V ar(ek)

Therefore, there is endogeneity in our model.
The OLS estimators are biased and inconsistent
Solution: Instrumental Variables
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IV when there are measurement errors

cov(Xj , ε) = 0 for j = 1, . . . , k − 1
cov(ek, X?

k) = 0 ⇒ cov(ek, Xk) 6= 0.

Therefore we need an IV for Xk.

Find an instrument z and construct:

Z =


1 X1,1 . . . Xk−1,1 z1
1 X1,2 . . . Xk−1,2 z2
...

...
1 X1,n . . . Xk−1,n zn


The consistent IV estimator is:

β̂IV = (Z ′X)−1Z ′Y
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Source of Endogeneity: Simultaneous Equations

The dependent and independent variables are entwined

Solution: Instrumental variables
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Simultaneity

homocides =α1 police+ β1,0 + β1,1 family income+ ε1

police =α2 homocides+ β2,0 + other factors + ε2

An increase in the number of homocides will affect the
number of police agents in the streets

Therefore, there is correlation between ε1 and police ⇒
Endogeneity

Solution: Instrumental Variables
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IV with simultaneous equations

We have the structural model of two equations:

y1 =α1y2 + β1w1 + ε1

y2 =α2y1 + β2w2 + ε2

w1, w2 are exogenous

We consider the intercept zero for simplicity

Parameters α1, α2, β1, β2 are called structural parameters

ε1, ε2 are called structural errors
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IV with simultaneous equations

We want to estimate y2. We substitute y1 in the second equation
and regress on y2.

y2 =α2(α1 y2 + β1 w1 + ε1) + β2 w2 + ε2

⇒
(1− α2α1)y2 =α2β1 w1 + β2w2 + α2ε1 + ε2

We have to assume that α1α2 6= 1, so:

y2 = π21 w1 + π22 w2 + ν2
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IV with simultaneous equations

y2 = π21 w1 + π22 w2 + ν2 reduced eq

where

π21 = α2β1/(1− α2α1)
π22 = β2/(1− α2α1)
ν2 = (α2ε1 + ε2)/(1− α2α1)
ν2 is a linear function of ε1 and ε2, then ν2 is uncorrelated
with w1 and w2.

We can estimate π12 y π22 by OLS.

If α2 = 0 then there is no simultaneity (test this).

If α2 6= 0, then there is endogeneity and we need IV for y1.
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2 Stages Least Squares

When each endogenous variable has more than one IV

Statistical properties of the 2SLS

Example with simultaneous equations
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Two steps least squares (2SLS)

Y = Xβ + ε with Xk endogenous

Assuming that we have valid instruments: z1, z2, . . . , zm for Xk,
i.e:

cov(zj , ε) = 0 for j = 1, . . . ,m
Each zj is partially correlated with Xk

Out of all linear combinations of zj the 2SLS method used the
most highly correlated with Xk

Xk = δ0 + δ1X1 + . . .+ δk−1Xk−1 + π1 z1 + . . .+ πm zm + η

As z is uncorrelated with ε then
X̂k = δ̂0 + δ̂1X1 + . . .+ δ̂k−1Xk−1 + π̂1 z1 + . . .+ π̂m zm isn’t
either.

So X̂k can be used as an instrument of Xk
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Two steps least squares (2SLS)

We could estimate the parameters of interest with two regressions:

[Stage 1 ] Estimate Xk by OLS:

Xk = δ0 + δ1X1 + . . .+ δk−1Xk−1 +π1 z1 + . . .+πm zm + η

As z is uncorrelated with ε then
X̂k = δ̂0 + δ̂1X1 + δ̂k−1Xk−1π̂1 z1 + . . .+ π̂m zm
isn’t either.

[Stage 2 ] Substitute X by X̂ in the original equation:

β̂2SLS = (X̂ ′X)−1X̂ ′Y

The 2SLS estimator is the same than the IV estimator if we have
only one IV.

If there are more than one endogenous variable, we have more
regressions in Stage 1.
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2SLS in R

First time, install the package sem.

> install.packages("sem")

Include this library with

> library(sem)

Look at the help of function tsls

> ?tsls
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Statistical properties of 2SLS

Let have the model
Y = Xβ + ε

where X = (1, X1, . . . , Xk)′.

There might be several endogenous variables amongst the
regressors (correlated with ε).

We have one or more IV for each endogenous variable

There exists Z = (Z1, Z2, . . . , Zl)′

Any exogenous elements of X are included in Z, plus the
instrumental variables of the endogenous variables.
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Consistency of 2SLS

Assumption 2SLS.1: IV is exogenous

E(Z ′ε) = 0.

Assumption 2SLS.2: Multicollinearity

rank E(Z ′Z) = l: this is automatically satisfy
because all the variables in Z are lineally
independent
rank E(Z ′X) = k + 1: It is necessary l ≥ k + 1
and Z and X are appropriately correlated
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Asymptotic normality of 2SLS

Assumption 2SLS.3: Homokedasticity, E(ε2|Z) = σ2

E(ε2Z ′Z) = σ2E(Z ′Z)

Theorem

Under Assumptions 2SLS.1–2SLS.3,

√
n(β̂2SLS − β)→d N

(
0,

σ2

E(X ′Z)[E(Z ′Z)]−1E(Z ′X)

)
as n→∞
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Residuals of 2SLS

The 2SLS residuals are ε̂i = yi −Xiβ̂
2SLS for i = 1, 2, . . . , n.

We need them to estimate σ2:

σ̂2 =
1

n− k − 1

∑
ε̂2i

The variance–covariance matrix is

V ar(β̂2SLS) =
σ̂2

X̂ ′X̂

where X̂ is estimated in Stage 2.

The standard error is the standard deviation of the diagonal of the
variance–covariance matrix.
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Covariance wit heteroskedasticity

If E(ε2) 6= σ2), the robust variance–covariance matrix is

V ar(β̂2SLS) = (X̂ ′X̂)−1
∑

ε2i X̂
′
iX̂i(X̂ ′X̂)−1
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Hypothesis test of 2SLS estimates

Confidence intervals

t-statistics on single variables

They are obtained as usual, using the standard errors or
robust standard errors as necessary

Multiple restrictions of the form H0 : Rβ = r are tested with
the Wald statistics

LM test (page 99–101 in Wooldridge).
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Pitfalls with 2SLS

The 2SLS estimator is never unbiased

For example, in a simple model with only one explanatory
variable X1 whose instrument is z, the asymptotic bias is:

plim β̂2SLS
1 = β1 +

cov(z, ε)
cov(z,X1)

If cov(z, ε) = 0 ⇒ consistent estimator

Otherwise, if cov(z,X1) is small (z is a weak instrument of
X1) then the inconsistency can be large
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Pitfalls with 2SLS

The standard errors tend to be large (imprecise estimator),
especially if the instrument is weak. See
(AngristKrueger table.pdf).

Bias in small sample is going to be large we have a weak
instrument ⇒ it is important to test for the strength of the
instrument. ⇒ important to test for strength of instrument in
the first stage of 2SLS:

H0 : π1 = . . . = πm = 0

Rule-of-thumb: F-statistics should exceed 10, otherwise a
weak instrument.
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How do we solve it?

1 Ignore it ⇒ biased and inconsistent parameter estimates
2 Use proxy (only works with omitted variables).

If imperfect ⇒ still biased and inconsistent estimates
But may reduce bias and lower the variance

3 IV: Often weak instruments or not exogenous ⇒ biased and
imprecise estimates

4 What to do? Try it all.
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Pitfalls with 2SLS
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2SLS with simultaneous equations

To make sure that Assumption 2SLS.2 is satisfied:

At least one of the exogenous variables of the second equation
is not in the first equation.

At least one of the exogenous variables of the first equation
should have a nonzero coefficient.

Counter example: House expenses and savings
Let us assume that house expenses and savings of a random
family are determined simultaneously by:

expenses =α1 savings+ β10 + β11 income+ β12 edu+ β13 age+ ε1

savings =α2 expenses+ β20 + β21 income+ β12 edu+ β13 age+ ε2
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