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Estimation of Binary Response Models

(GB: Chapter 13.3–13.6; 15.4-15.7)
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Maximum Likelihood Estimation

The likelihood function

Maximising the log-likelihood

2 / 47



Estimation MLE properties Results Pitfalls

Motivation

Likelihood means probability

Assuming certain probability distribution, what are the
parameters of it for a particular sample?
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Motivation

We have coin A and coin B? Would you bid head of tails in
either of them?

What is the value of p for coin A? and for coin B?

After 10 throws:

> set.seed(42)

> A=rbinom(10, 1, 0.7)

> B=rbinom(10, 1, 0.3)

coin A: 5 heads and 5 tails
coin B: 4 heads and 6 tails

What is the estimated probability of head for each coin?
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Motivation

Each thrown follows a Bernoulli distribution:

yj =
{

1 p
0 (1− p)

fy(yj ) = pyj (1− p)1−yj

The joint distribution function of our sample {y1, . . . , y10}, or
likelihood function:

fy1,...,y10(y1, . . . , y10) =
10∏

j=1

pyj (1− p)1−yj independence
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Motivation

The loglikelihood function:

`(p) = fy1,...,y10(y1, . . . , y10) =
10∑

j=1

[yj log(p) + (1− yj ) log(1− p)]

=5 log(p) + 5 log(1− p) coin A

=4 log(p) + 6 log(1− p) coin B
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Motivation

What is the value of p that maximises the loglikelihood function
of my sample?

Take first derivative and equal to zero.
Coin A:

5
p
− 5

1− p
= 0⇒ p̂A = 0.5

Coin B:
4
p
− 6

1− p
= 0⇒ p̂B = 0.4
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Motivation

Let us throw the coin again, after 100 throws:

> set.seed(42)

> A=rbinom(100, 1, 0.7)

> B=rbinom(100, 1, 0.3)

coin A: 66 heads and 34 tails
coin B: 37 heads and 63 tails

What do you think the probability of getting head for each
coin is?

The maximum likelihood estimator of each coin are:
p̂A = 0.66 and p̂B = 0.37 which is closer to reality.
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The likelihood function

Assume we have a sample of variables y and X

We know the conditional distribution of the y variable given X

The particular parameters of this distribution are unknown
and depend on β

Therefore, estimating the parameters of this distribution will
provide estimates for β

These estimates are found as the parameters that most likely
have generated the observed sample

Find the values that approximates the sample distribution best
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MLE set–up

We have a sample {(yj ,xj )} with j = 1, 2, . . . ,n
Assume a conditional density function of yj given xj

f (yj |xj )

Note that we make assumptions on the shape of the sample
distribution

In OLS we only make assumptions on the shape of the
expectation, which is a most less restrictive assumption
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MLE set–up

The conditional log–likelihood function for observation j is

`j (β) = log f (yj |xj ,β)

The conditional log–likelihood function for the whole sample is

`(β) =
n∑

j=1

`j (β) =
n∑

j=1

log f (yj |xj ,β)

and the maximum likelihood estimator is the value that minimises
the function above

β̂
ML

= arg max
β

n∑
j=1

log f (yj |xj ,β)
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MLE for Index models

y takes values 0 and 1 (Bernoulli) with probability

pj = P(yj = 1|X) = G(xjβ)

Its conditional probability mass function is:

f (yj |xj ,β) = pyj

j (1− pj )1−yj , yj = 0, 1

We have made the assumption of the distribution of the sample

The conditional log–likelihood function for observation j is

`j (β) = log f (yj |xj ,β) = yj log pj + (1− yj ) log(1− pj )
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MLE for Index models

The conditional log–likelihood function for the whole sample is

`(β) =
n∑

j=1

`j (β) =
n∑

j=1

[yj log G(xjβ) + (1− yj ) log(1−G(xjβ))]

The ML estimator is the one that maximises the conditional
log–likelihood function.

β̂
ML

= arg max
β

`(β)

How do we maximise a function?

Find maximum (all first derivatives w.r.t βi = 0)

If second derivative < 0 ⇒ maximum
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MLE for Index models

β̂
ML

solves

∂`(β)
∂βi

=
n∑

j=1

yj −G(xjβ)
G(xjβ)(1−G(xjβ))

G ′(xjβ)xij = 0

There are k + 1 of these equations... one for each βi .

s(β) =



∂`(β)
∂β0

...
∂`(β)
∂βj

...
∂`(β)
∂βk


=


0
...
0
...
0


Computer work!!!!
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MLE for Index models

The parameter β is a maximum, i.e. it does maximises the log-lik
function, if the matrix of second derivatives of the log-lik, the
Hessian:

H (β) =


∂2`(β)
∂β2

1

∂2`(β)
∂β1∂β2

. . . ∂2`(β)
∂β1∂βk

∂2`(β)
∂β2∂β1

∂2`(β)
∂β2

2
. . . ∂2`(β)

∂β2∂βk

...
...

∂2`(β)
∂βk∂β1

∂2`(β)
∂βk∂β2

. . . ∂2`(β)
∂β2

k


is negative definite.
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MLE for the logit model

y is binary with probability pj and we assume we can fit a logit
model to our data.

pj = Λ(xjβ) =
exj β

1 + exj β
j = 1, . . . ,n

The β̂
ML

estimator solves

n∑
j=1

yj − Λ(xjβ)
Λ(xjβ)(1− Λ(xjβ))

Λ′(xjβ)xij = 0

There is not explicit solution, so we would need numerical methods
to solve this equation such as the Newton–Raphson iterative
procedure.
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MLE for the probit model

y is binary with probability pj and we assume we can fit a probit
model to our data.

pj = Φ(xjβ) j = 1, . . . ,n

The ML estimator is the β that solves

n∑
j=1

yj − Φ(xjβ)
Φ(xjβ)(1− Φ(xjβ))

φ(xjβ)xij = 0

There is not explicit solution, so we would need numerical methods
to solve this equation such as the Newton–Raphson iterative
procedure.
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Exercise (5 minutes)

We are using a probit model:

1 Assume that xjβ = β0 + β1X1j and we have the following
sample:

y1 = 1, x11 = 1
y2 = 0, x12 = 0.5
y3 = 1, x13 = 2

2 Write the log–likelihood function of glm model assuming that
G is the identity function.
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MLE properties
If

Distribution of y given X is correctly specified

Parameters are identified (not like the variance in the probit)

The log-lik is smooth (two derivatives)

Then

Consistent (Theorem 13.1)

Asymptotically normal (Theorem 13.2)

Asymptotic efficiency
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MLE properties

Two key concepts:

The Score Vector(dimension (k + 1)× 1)

The vector of first derivatives of the log-lik with respect to
parameters
Used for the first order conditions (f.o.c.)

The Hessian Matrix (dimension (k + 1)× (k + 1))

The matrix of second derivatives (including cross derivatives)
of the log-lik with respect to parameters
Used for the second order conditions and for the variance of
the estimators.
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Score vector

The score vector of the log-lik for observation i :

sj (β) =
(
∂`j (β)
∂β0

,
∂`j (β)
∂β1

, . . . ,
∂`j (β)
∂βk

)′

The first order condition of the max log-lik is that summing the
individual scores (j = 1, . . . ,n) is =0:

n∑
j=1

sj (β) =

 n∑
j=1

∂`j (β)
∂β0

,

n∑
j=1

∂`j (β)
∂β1

, . . . ,

n∑
j=1

∂`j (β)
∂βk

 = (0, 0, . . . , 0)
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Hessian

The Hessian matrix of the log-lik for observation i :

Hj (β) = ∇βsj (β) ⇒ H =
n∑

j=1

Hj

The Hessian is a (k + 1)× (k + 1) matrix

It is symmetric because

∂2`j (β)
∂β1β2

=
∂2`j (β)
∂β2β1

The Hessian is negative definite

A variance matrix is positive definite.
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Conditional information matrix

It can be shown that,

−E [Hj (β)|xj ] = Var [sj (β)|xj ] = A(xj ,β)

When β is the true value that minimises the log-lik:

−E (Hj (βtrue)) = E (sj (βtrue)sj (βtrue)′) = A0

because E [sj (βtrue)|xj ] = 0
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Consistency (Theorem 13.1)

If

Distribution of y given X is correctly specified

Parameters are identified (not like the variance in the probit)

The log-lik is continuous

Then,

plim β̂
ML

= βtrue as n →∞
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Asymptotic normality (Theorem 13.2)

If

Distribution of y given X is correctly specified

Parameters are identified (not like the variance in the probit)

The log-lik has two derivatives

√
N (β̂

ML − βtrue)→d N (0,A−1
0 )

where A0 is a positive definite matrix.

The Hessian is a negative definite matrix, so the negative sign
makes it positive definite, as the variance:

−E (Hj (βtrue)) = E (sj (βtrue)sj (βtrue)′)
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Asymptotic variance of estimator

The asymptotic variance of the estimator is:

VML = AVar(β̂
ML

) = A−1
0 /n = [−E (Hj (βtrue))]−1 /n

But, βtrue is unknown... three possible estimators:

V̂ML = ÂVar(β̂
ML

) =

 n∑
j=1

−Hj (β̂
ML

)

−1

or

=

 n∑
j=1

sj (β̂
ML

)sj (β̂
ML

)′

−1

or

=

 n∑
j=1

−E [H (yj ,xj , β̂
ML

)|xj ]

−1
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Asymptotic variance of estimator

Which variance estimator we choose?

It is up to you.

The first estimator requires second order derivatives of the
log-lik and it is not guaranteed to be positive definite

If it is not pos. definite then the se of the estimators will not
be defined (sqrt)

The second estimator is always positive definite. However, it
is not very good in moderate sample sizes

If we know the conditional expectation close form, this is the
most attractive estimator.

Positive definite (it depends on the informatoin matrix)
Behaves well in moderate samples
Usually only the first derivative of the log-lik is required
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MLE for binary models

The score vector:

sj (β) =
G ′(xjβ)[yj −G(xjβ)]
G(xjβ)[1−G(xjβ)]

x′j

The expected value of the Hessian conditioned on xj :

−E [Hj (β)|xj ] =
[G ′(xjβ)]2x′jxj

G(xjβ)(1−G(xjβ))
≡ A(xj , β)

Hence, we use the third variance matrix estimator in this case.

What are the standard errors?
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MLE for binary models

For large samples:

β̂
ML ∼ N (β, V̂ML)

where

V̂ML =


n∑

j=1

[G ′(xj β̂)]2x′jxj

G(xj β̂)(1−G(xj β̂))


−1

the standard errors are the square root of the estimated
variance.
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Reporting result

The coefficient estimates, standard error and the value of
log-likelihood function is given by R

The marginal effect of the coefficients depends on the function
G ′, so the values β̂ do not explain the effect of X on y

The sign of the coefficients correspond with the sign of the
effect
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Estimating marginal effects

The marginal effect of variable xj continuous:

logit :
exp(−X β̂)[

1 + exp(−X β̂)
]2 β̂j

probit : φ(X β̂)β̂j

They depend on β̂ and X

Average of the marginal effects, take the mean of those
quantities

Marginal effects of the sample average of X

The marginal effects can be compared with the coefficients of
the LPM.
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Estimating marginal effects

The marginal effect of variable xj discrete, from 0 to 1:
Logit:

Λ(β̂0 + β̂1X̄1 + . . .+ β̂j−1X̄j−1 + β̂j 1 + β̂j+1X̄j+1 + . . .+ β̂k X̄k )
−Λ(β̂0 + β̂1X̄1 + . . .+ β̂j−1X̄j−1 + β̂j 0 + β̂j+1X̄j+1 + . . .+ β̂k X̄k )

Probit:

Φ(β̂0 + β̂1X̄1 + . . .+ β̂j−1X̄j−1 + β̂j 1 + β̂j+1X̄j+1 + . . .+ β̂k X̄k )
−Φ(β̂0 + β̂1X̄1 + . . .+ β̂j−1X̄j−1 + β̂j 0 + β̂j+1X̄j+1 + . . .+ β̂k X̄k )

Average of the variables X
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Goodness of fit

Goodness of fit

Correctly predicted outcomes

Deviance

Pseudo R2
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Test hypothesis on parameters

For individual effects

t-test

For q linear restrictions

F-test not applicable
Wald test
Likelihood ratio (LR) or Deviance
Lagrange multiplier (LM)
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Likelihood ratio

The unrestricted model:

y = G(β0 + β1x1 + . . .+ βkxk ) + ε

The restricted model (H0 : β1 = β5 = βk = 0, three restrictions
q = 3)

y = G(β0 + β2x2 + . . .+ β4x4 + β6x6 + . . .+ βk−1xk−1) + ε

Deviance = LR ≡ 2[`unres − `res ] ∼ χ2
q

Large LR value ⇒ evidence against H0

In R, deviance test: anova(model.rest, model.unres, test=”chisq”,

lower.test=F)
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Wald test

y = β0 + β1x1 + . . .+ β5x5 + ε

and we are testing

H0 : β2 = β5 = 0

This can be written:

(
0 0 1 0 0 0
0 0 0 0 0 1

)
︸ ︷︷ ︸

R

β︷ ︸︸ ︷

β0

β1

β2

β3

β4

β5

 =
(

0
0

)
︸ ︷︷ ︸

r

H0 : Rβ = r
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Wald test

The test statistics:

W = (Rβ̂ −Rβ)′(RV̂R)−1(Rβ̂ −Rβ) ∼a χ2
q

where V̂ is the estimated asymptotic variance of β̂.

Large W value ⇒ evidence against H0
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Lagrange multipliers test

Let us have q restrictions (for example in H0 : β2 = β5 = 0,
q=2)

The estimates of the unrestricted model are β̂

The estimates of the restricted model are β̃

Test statistics

LM =

 n∑
j=1

s̃j

′ Ṽ −1

 n∑
j=1

s̃j

 ∼ χ2
q

The estimate Ṽ can be chosen amongst∑
s̃j s̃ ′j or −

∑
H̃j or

∑
Ãj
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LM test

There is a special way of getting this test for the Index models.

We have q restrictions

The restricted model is y = G(Vβ) + η

V contains the k + 1− q variables of X after removing the q
restrictions

Z contains the q variables of X that we removed for the
restricted model

X = (V,Z)
For example: y = β0 +β1x1 +β2x2 +β3x3 +β4x4 +β5x5 + ε
and we want to test H0 : β2 = β4 = 0 then

V = (1,X1,X3,X4) and Z = (X2,X5)
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LM test

1 Estimate the restricted model and get the residuals
η̃ = yj −G(Vj β̃)

2 Construct the standarised residual

r̃ =
η̃√

G̃j (1− G̃j )
where G̃j = G(Vj β̃)

3 Do the regressions

r̃j =
G̃ ′j√

G̃j (1− G̃j )
Vj +

G̃ ′j√
G̃j (1− G̃j )

Zj + uj
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LM test

We regress the residuals of the restricted model (without Z )
on the standarised V and Z variables.

If there is no endogeneity, the V cannot explain the residuals

If H0 is true, the Z cannot explain the residuals

We take the R2 of the last regression and calculate the LM
test statistics

LM statistics is calculated as n ∗ R2 ∼ χ2
q

If LM is large then we will reject H0
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Model Misspecification

Heterogeneity

Non-normality

Endogeneity
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Omitted variables - neglected heterogeneity

If the omitted variables are exogeneous, we are neglecting
heterogeneity.

Let us think of the latent variable model:

y∗ = Xβ + γc + ε ε|X, c ∼ N (0, 1)

where c is an unobserved variable with mean zero and variance τ2.

The probit model: P(y = 1|X, c) = Φ(Xβ + γc)

Case 1: c and X are independent

Case 2: c and X are dependent
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Case 1: c, X independent

The error term in the latent model is γc + ε with mean zero
and variance σ2 = γ2τ2 + 1
So when we ommit γc from the model, we are estimating β/σ
without knowing

This is a problem with the probit model, due to its nature

Similar problem when E (ε2) 6= 1
Is this a great problem? Not so much, because β is not our
partial effects.

Structural partial effects do not have this problem either.
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Case 1: c, X independent

The partial effect of variable xj is:

∂P(y = 1|X, c)
∂xj

= φ(Xβ + γc)βj

But because c is unknown, we estimate:

φ

(
X
β

σ

)
βj

σ

which can be proven to be the APE across the population c,

Ec[φ(X 0β + γc)βj ] = φ

(
X 0β

σ

)
βj

σ

where X 0 is a fixed value of X.
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Case 1: c, X independent

In summary, the omitted variable problem, when this variable is
independent of X:

The partial effects of certain xj cannot be estimated
consistently with the probit model

The APE are consistently estimated by probit (if c is normally
distributed)
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Case 2: c, X dependent - endogeneity

If c is correlated with X or dependent in any other way:
omission of c is a serious problem.

We cannot get consistent estimates of the APE

We can find instruments z and run 2SLS on the LPM

Rivers and Vuong’s 2-step approach.
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