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2.5 R and S-plus commands

2.5.1 Data visualisation

The data set contains: education, region, BL, HP, FE, married,

experience, union, salary.

We can visualise the distribution using the histogram Fig-

ure 2.5.1, which is produced with the function hist() with

argument salary.

# Read the file "salary_edcuation" which has a header

data<-read.table("./salary_education.dat", h=T)

attach(data)

#Plot the histogram of the variable salary

hist(salary)
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Another way to estimate the density function is to use

kernel estimators as in Figure 2.5.1

#Plot density function of salary

plot(density(salary), main="")
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If we have two regressors then the data is bivariate and it

is observed with a scatter plot. For example, we can compare

the years of education and the salary at the same time as it

can be seen in Figure 2.5.1:

# Scatter plot of salary versus education
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The scatter plot can be used with a third factor variable.

For example, the relation between salary and education can be

shown for males and females separately, Figure 2.5.1.

# Education, salary with sex dependency

FE<-as.factor(FE)

pdf("coplot.pdf")

par(cex.axis=1.5, cex.main=2,lwd=1.5, cex.lab=1.5, mar=c(5,5,3,2))

coplot(salary~education|FE)

dev.off()
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We can have a scatter plot for each pair of variables with

the command pairs(). Figure 2.5.1 shows the relation be-

tween three numeric variables of our data set: salary, experi-

ence and years of education. We create a new data frame for

this.

data2<-data.frame(salary, education, experience)

postscript("pairs.ps")

par(cex.axis=1.5, cex.main=2,lwd=1.5,

cex.lab=1.5, mar=c(5,5,3,2))

pairs(data2)

dev.off()
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Other commands to create plots from the data are:

• plot(). The command plot(x, y, ...) is the general func-

tion to plot. If the variables x and y are numeric then

they will be used in the axes. If x is a qualitative vari-

able, then it will produce a set of boxplots. Example:

plot(x, y , xlab=”This is the x axis”, ylab=”This is the y

axis”, main=”This figure has two axes of evil”, type=”l”,

xlim=c(0, 20), lty=3, pch=2)

• lines(), points(), abline(). These commands add dots or

lines to existing plots.

2.5.2 Linear model in R and S-Plus

R and S-plus specify the regression model with the following

formula:

(2.6) y ∼ 1 + x1 + x2

where

• y is the dependant variable

• x1, x2 are the regressors. It can of course have more than

two regressors.

The 1 in the formula indicates that the intercept (β0) is

necessary. If the 1 is omitted, then R considers that β0 is

necessary.
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Formula (2.6) refers to the model

yi = β0 + β1x1i + β2x2i + ǫi

If the regression line should go through the origin (i.e.

y = 0 when x1 = 0 = x2) and β0 = 0, the formula en R is

y ∼ −1 + x1 + x2
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R and S-plus use the function linear model lm() to obtain

the OLS estimator. The main arguments of lm() are:

lm(formula, data, na.action) where

• formula is the formula of the model (necessary)

• data is name of the data set (optional). If it is not included,

the function lm use the variables in memory.

• na.action specifies how to manage the missing values (marked

with NA). This argument is also optional. By default, it

assumes that there are not missing values.
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We are interested in estimate a model that quantifies the

relationship between the salary, the experience and the years

of education. This model is not going to go through the origin

because although the years of education and experience can be

zero, the salary can be positive.

>salary.lm<-lm(salary~1+experience+education)

> summary(salary.lm)

Call:

lm(formula = salary ~ 1 + experience + education)

Residuals:

Min 1Q Median 3Q Max

-8.5650 -2.8117 -0.5874 2.0026 36.2877

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.56732 1.25737 -4.428 1.16e-05 ***

experience 0.10367 0.01734 5.978 4.17e-09 ***

education 0.97685 0.08471 11.532 < 2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.584 on 525 degrees of freedom

Multiple R-Squared: 0.209, Adjusted R-squared: 0.206

F-statistic: 69.36 on 2 and 525 DF, p-value: < 2.2e-16
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• The regression model is denoted by salary.lm to study the

diagnostic results later on.

• The command summary can be used in many objects of

the language R.

• The regression model (with two decimal digits) is

E[salary] = −5.57 + 0.10experience + 0.98education

• The p-valor 4.17e-09 refers to the t–test H0 : β1 = 0.

Therefore, there is a great evidence of linear dependency

between salary and experience. The same for the variables

salary and education.

• The determination coefficient isR2 = 0.209, i.e. the model

explain only a 21% of the variation of salary.

• The F–statistic: 69.36 test the hypothesis H0 : β1 = β2 =

0 whose p–value is 2.2e-16.
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2.6 Linear model in Stata

. regress salary experience education

Source | SS df MS Number of obs = 528

-------------+------------------------------ F( 2, 525) = 69.36

Model | 2914.64782 2 1457.32391 Prob > F = 0.0000

Residual | 11030.6042 525 21.0106748 R-squared = 0.2090

-------------+------------------------------ Adj R-squared = 0.2060

Total | 13945.2521 527 26.4615789 Root MSE = 4.5837

------------------------------------------------------------------------------

salary | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

experience | .103667 .0173408 5.98 0.000 .0696011 .137733

education | .9768533 .0847097 11.53 0.000 .8104416 1.143265

_cons | -5.567325 1.257373 -4.43 0.000 -8.037426 -3.097223

------------------------------------------------------------------------------
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We can consider the model through the origin.

> salary.lm2<-lm(salary~-1+education+experience)

> summary(salary.lm2)

Call:

lm(formula = salary ~ -1 + education + experience)

Residuals:

Min 1Q Median 3Q Max

-7.4030 -3.3494 -0.9755 1.8099 35.8020

Coefficients:

Estimate Std. Error t value Pr(>|t|)

education 0.61677 0.02413 25.565 < 2e-16 ***

experience 0.06319 0.01499 4.214 2.95e-05 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.664 on 526 degrees of freedom

Multiple R-Squared: 0.7998, Adjusted R-squared: 0.7991

F-statistic: 1051 on 2 and 526 DF, p-value: < 2.2e-16

2.6.1 Diagnóstico del modelo

Residuals and fitted values are fundamental tools to diagnose

whether a linear model is appropriate to our problem. These
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values can be extracted from our model with resid(salary.lm)

and fitted(salary.lm).

Graphically, the command plot(salary.lm) shows the

following three figures:

1. Plot of the residuals vs fitted values. It is useful to

find a) extreme values (in the tails of the residuals); b) het-

erokedasticity (does the variance around zero changes?); c)

no linearity with the endogenous variable (from the cur-

vature of the plot).

2. Normal QQ plot of residuals. Are the ǫi normally

distributed?.

3. Cook distance plot Some values might have a great

impact on the parameter estimates. The Cook distance

measures the influence of each point and measures how the

vector of parameters changes if certain point is removed

from the data set.
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