
PROBLEM SET 5 
	  

Problem 1 (The type I Tobit model with neglected heterogeneity) 
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Problem 2 (A variation of the Tobit model) 
	  

	  

	  
	  

  

G009 Advanced Microeconometrics

Solutions to Lecture 2 Exercises

1. Consider the probit model with an endogenous regressor from lecture 2. Are the parameters

(!1,"1) identified? Explain.

Solution: Yes, they are identified. Standard arguments from ML or OLS imply identification

of the parameters of the equation for Y 2, including #2. From the second stage regression it

is clear that !1!
1!"2

, #1!
1!"2

, "

$2
!
1!"2

are identified. Combining the last of these and #2 gives

identification of $, and thus of !1 and "1.

2. Show that if Z " N (0, 1), then E [Z|Z > c] =
% (c)

1# ! (c)
.

Hint: The pdf for Z conditional on Z > c is f (Z|Z > c) =
% (z)

Pr {Z > c}
=

% (z)

1# ! (c)
.
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3. Consider the model:

Y =

&
''(

'')

Y # if 0 < Y # $ 1

0 if Y # $ 0

1 if Y # > 1

,

Y # = X' + U ,

where U and X are independent and U " N
*
0,#2

+
.

(a) Write the log-likelihood of an iid sample {(yi, xi) :, i = 1, ..., N}.

Solution:

L (',#) =
1

N

N,

i=1

log!

"
#
xi'

#

#1[yi=0]
log!

"
xi' # 1
#

#1[yi=1] -
log # #

"
yi # xi'!

2#

#2.1[0<yi<1]

1

(b) What are the asymptotic properties of the Maximum Likelihood estimator?

Solution: All the usual ML results apply, the parameter estimates are consistent, asymp-

totically normal, and attain the e!ciency bound.

(c) How could you perform a specification test of this model?

Solution: Absolutely. White’s ML specification test comparing the Hessian and the outer

product for of the information matrix applies.
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Problem 4 (RECAP + Probit Selection Model) [Is not being presented in tutorial]	  
	  

	  

 

PART A

Answer all questions. 50 marks total.

1. (a) i. [4] γ can be consistently estimated by the OLS estimator

γ̂OLS =

�
n�

i=1

x�ixi

�−1 n�

i=1

x�iy2i

as long as E [X �X] is nonsingular and E [X �U2] = 0.

ii. [4] The IV/SLS estimator can be used as long as the necessary rank condition holds. For

example, if X2 is univariate (or if all but one component are dropped) and E [X � (X1, Y2)]

has full column rank then the IV/SLS estimator

θ̂IV =

�
n�

i=1

x�i (xi1, y2)

�−1 n�

i=1

x�iy1i

is consistent for θ ≡
�
β�, δ�

��
.

i. [5] The probit (maximum likelihood estimator) is consistent, with the rank condition that

E [X �X] is nonsingular and the normalization that Ω22 = 1 are required for identification.

γ̂probit = argmax
γ

=
1

n

n�

i=1

(1− yi) log (1− Φ (xiγ)) + yi log (Φ (xiγ)) .

ii. [4] Same as part a(ii) of this question: If X2 is univariate and if E [X � (X1, Y2)] has full

column rank then the IV/SLS estimator

θ̂IV =

�
n�

i=1

x�i (xi1, y2)

�−1 n�

i=1

x�iy1i

is consistent for θ ≡
�
β�, δ�

��
. Estimation could also be done by maximum likelihood or more

generally via GMM.

i. [3] Same as part a(i) of this question, the OLS estimator is consistent under the usual rank

condition and will here coincide with the ML estimator.

ii. [6] The parameters can be estimated by maximum likelihood, GMM, or a two-stage pro-

cedure that first estimates γ and then uses the first stage estimator to construct a control

function in the estimation of the first equation as described in lecture 2 and Wooldridge

Section 15.7. The last stage will require a rank condition that E [W �W ] be non-singular,

where W = [X1, Y2, U2].
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