
PROBLEM SET 2 SOLUTIONS 

Problem 1 (Omitted variable bias and IV)	
  
	
  

	
  
	
  
	
  
	
  

	
  
	
  
	
  

	
  
	
  

(e) Using the homoscedasticity assumption (u2
i |zi) = σ2 and the law of iterated ex-

pectations we obtain (u2
i z

�
izi) = [ (u2

i |zi)z�izi] = σ2 (z�izi). In that case we find

AV1 = σ2
�

(x�
izi)[ (z�izi)]

−2 (z�ixi)
�−1

× (x�
izi)[ (z�izi)]

−3 (z�ixi)
�

(x�
izi)[ (z�izi)]

−2 (z�ixi)
�−1

, (6)

i.e. the formula for the asymptotic variance simplifies somewhat, but not as much

as it simplifies for the 2SLS estimator under homoscedasticity.

Comment: Notice that the case when the “sandwich formula” for the estimator

simplifies further (e.g. OLS under homoscedasticity; GLS under correctly specified

variance-covariance of the error; and 2SLS under homoscedasticity) is typically the

case when that particular estimator is (asymptotically) efficient, i.e. has smallest

(asymptotic) variance within a given class of estimators (see e.g. Gauss-Markov the-

orem). Under homoscedasticity one can indeed show that AV1 = AsyVar(
√
nβ̂1) ≥

AsyVar(
√
nβ̂2SLS), using the same trick that we used when proving the Gauss-

Markov theorem. More generally, we can consider estimators β̂Ω = (Γ̂�Ω−1Γ̂)−1 Γ̂�Ω−1π̂,

where Ω is a non-random invertible L × L matrix. Independent of the choice of Ω

one can show that AsyVar(
√
nβ̂Ω) ≥ AsyVar(

√
nβ̂2SLS) under homoscedasticity, i.e.

the 2SLS estimator is asymptotically efficient within this class of IV-estimators β̂Ω.

Question 2

(a) zi is a relevant instrument for xi if Cov(xi, zi) �= 0, i.e. if xi and zi are correlated.

It is plausible to assume that zi is relevant in this example, because people that

were provided with free cigarettes (zi = 1) are probably more likely to have started

smoking (xi = 1) than people that were not be given free cigarettes (zi = 0).

zi is exogenous if Cov(ui, zi) = (uizi) = 0. This is also called an exclusion re-

striction, because it means that zi has no direct effect on yi, only an indirect effect

through xi. One can argue that zi is exogenous here, because having 100 packs of

free cigarettes should not directly affect your health, only indirectly through your

smoking behaviour. However, the main concern here would probably be that there

might be other indirect channels that we don’t control for, in particular one might

sell the 100 packs of free cigarettes and use the money to buy health services, which

impacts yi. This is clearly a concern, but unless we are given additional data (e.g.

health service expenses for each individual, which we could include as an additional

3
controls — i.e. regressors — in our model) there is not much we can do about this

concern. In the following we assume that xi is exogenous. Our results are invalid,

if this assumption is violated.

(b) Let y, x, and z be the n× 1 vectors with entries yi, xi, and zi. Let 1n be the n× 1

vector whose entries are all equal to 1. Let X = (1n, x) and Z = (1n, z). We have

X �X =

�
n n10 + n11

n10 + n11 n10 + n11

�
=

�
70 30

30 30

�
,

X �y =

�
n00y00 + n01y01 + n10y10 + n11y11

n10y10 + n11y11

�
=

�
80

42

�
. (7)

We compute

(X �X)−1 =
1

1200

�
30 −30

−30 70

�
. (8)

For the OLS estimator we thus find
�

α̂

β̂

�
= (X �X)−1X �y =

�
0.95

0.45

�
. (9)

The fact that β̂ > 0 means that yi (health) and xi (smoking) are possitively cor-

related in our sample. However, since we suspect that xi is endogenous we should

not interpret β̂ > 0 as measuring a positive causal effect (i.e. that smoking causes

better health).

(c) We have

Z �X =

�
n n10 + n11

n01 + n11 n11

�
=

�
70 30

20 10

�
,

Z �y =

�
n00y00 + n01y01 + n10y10 + n11y11

n01y01 + n11y11

�
=

�
80

20

�
. (10)

We compute

(Z �X)−1 =
1

100

�
10 −30

−20 70

�
. (11)
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For the 2SLS estimator we thus find

�
α̂2SLS

β̂2SLS

�
= (Z

�
X)

−1
Z

�
y =

�
2

−2

�
. (12)

If we believe that our instrument is relevant and exogenous, and that our sample

size is sufficiently large (we haven’t calculated any standard error, yet), then β̂2SLS

is a good estimator for the true causal effect of xi on yi; since β̂2SLS < 0 this means

that smoking decreases health. If we believe in this conclusion, then the fact that

the OLS estimator is positive is indeed a result of the endogeneity of xi.

(d) We assume Var(ui|zi) = 1/10, i.e. homoscedasticity with σ2 = 1/10. Under ho-

moscedasticty and for known σ2 the variance of the 2SLS estimator can be estimated

via

�Var
�

α̂2SLS

β̂2SLS

�
= σ2

(X
�
PZX)

−1
= σ2

�
(X

�
Z)(Z

�
Z)

−1
(Z

�
X)

�−1
. (13)

We already calculated Z
�
X above (and we have X

�
Z = (Z �

X)�). We find

Z
�
Z =

�
n n01 + n11

n01 + n11 n01 + n11

�
=

�
70 20

20 20

�
,

(Z
�
Z)

−1
=

1

1000

�
20 −20

−20 70

�
. (14)

Combing these results we obtain

�Var
�

α̂2SLS

β̂2SLS

�
=

1

10

�
70 30

30 13

�−1

=

�
0.13 −0.3

−0.3 0.7

�
. (15)

Thus, �std(β̂) =
√
0.7 = 0.8367.

(e) The t-test statistics for testing H0 : β = 0 reads t =
β̂

�std(β̂)
= −2.39. Since |t| > 1.96

we reject H0 at 95% confidence level (= 5% significance level).
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Problem 2 (Measurement error and IV) 
	
  

	
  
	
  

	
  

as n → ∞. For the asymptotic variance we thus have

ΣWLS =
[(wixiui)2]

[ (wix2
i )]

2
=

[w2

i x
2

i (u2

i |xi)]

[ (wix2
i )]

2
=

[w2

i x
2

i (1 + x2

i )]

[ (wix2
i )]

2
,

where we used the law of iterated expectations and (u2

i |xi) = 1 + x2

i .

(b) For wi = 1 we obtain the OLS estimator, whose asymptotic variance thus reads

ΣOLS =
[x2

i (1 + x2

i )]

[ (x2
i )]

2
=

(x2

i ) + (x4

i )

[ (x2
i )]

2
=

1 + 3

12
= 4.

(c) The error term ui is heteroscedastic here, i.e. one needs to use the heterscedasticity

robust variance estimator for ΣOLS = [(xiui)
2]

[ (x2
i )]

2 . This estimator is obtained from the

last formula by replacing expectation by sample means and error ui by residuals

ûi = yi − xiβ̂OLS, i.e.

Σ̂OLS =
1

n

�n
i=1

x2

i û
2

i�
1

n

�n
i=1

x2
i

�2 .

(d) From the lecture we know that the optimal weight are given by wi =
λ

(u2
i |xi)

= λ
1+x2

i
,

where λ > 0 is an arbitrary scalar factor, which in the following we choose as λ = 1.

We know that for the optimal weights, there should be a cancelation between the

denominator and the numerator in ΣWLS, namely we find

ΣWLS =
[w2

i x
2

i (1 + x2

i )]

[ (wix2
i )]

2
=

1

(wix2
i )

=

� �
x2

i

1 + x2
i

��−1

=

�
1

3

�−1

= 3.

Thus, for the optimal weights we have ΣWLS < ΣOLS, i.e. the WLS estimator is

more efficient than the OLS estimator.

Question 3 (20 points)

(a) We have

yi = piβ + ui,

where ui = εi − viβ. We find

β̂OLS − β =
1

n

�n
i=1

piui

1

n

�n
i=1

p2i
→p

piui

p2i
=

−β v2i
(p∗i )

2 + v2i
=

−βσ2

v

1 + σ2
v

�= 0,

as n → ∞. Here, we used the WLLN and the continuous mapping theorem. Thus,

β̂OLS is not consistent.

3
(b) As n → ∞ we have

γ̂ =

�n
i=1 zipi�n
i=1 z

2
i

→p
zipi
z2i

=
zip∗i
z2i

=
ρ

1
= ρ,

π̂ =

�n
i=1 ziyi�n
i=1 z

2
i

→p
ziyi
z2i

=
β zip∗i

z2i
=

βρ

1
= βρ,

where we again used the WLLN and the continuous mapping theorem.

(c) A consistent estimator for β is given by

β̂IV =
π̂

γ̂
.

This is the standard IV (or 2SLS) estimator expressed in terms of the reduced form

estimators π̂ and γ̂. In the standard 2SLS setting the first stage consists of obtaining

γ̂ and thus p̂i = γ̂zi, followed by the second stage, where one regresses yi on p̂i, which

gives the same β̂IV as above.

(d) zi is a relevant instrument if ρ �= 0.

The effective error term is ui = εi−viβ, which contains both εi and vi, i.e. exogeneity

of zi requires (ziεi) = 0 and (zivi) = 0.

(e) 2SLS still works, i.e. one regresses yi on a constant, p̂i = γ̂zi and wi. The resulting

second stage estimator for β1, β2, β3 is consistent.

Section B

Question 4 (20 points)

(a) We have

Qn(λ) =
1

n
log

n�

i=1

f(yi|λ) =
1

n

n�

i=1

log f(yi|λ) =
1

n

n�

i=1

log

�
λyi e−λ

yi!

�

=
1

n

n�

i=1

[yi log λ− λ− log yi!] =

�
1

n

n�

i=1

yi

�
log λ− λ− 1

n

n�

i=1

log yi!.

Maximizing this over λ gives the FOC

�
1

n

n�

i=1

yi

�
1

λ̂
− 1 = 0,

which gives λ̂ =
1
n

�n
i=1 yi.
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