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Motivation Linear panel data models

Summary: Censored Regression Models

Two types of censored models

Data censoring
Corner solution outcomes

Tobit model

Expected values and marginal effects

Estimation (MLE)

Reporting results

Specification issues

Heteroskedasticity
Endogeneity
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Summary today’s class

1 Motivation

What is panel data?
Data sets and notation
Review of the linear model

2 The linear panel data model, and four estimation methods:

Pooled OLS
Fixed effects
First differences
Random effects
Models comparison

3 Next week: Probit, Logit and Tobit with panel data
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Motivation Linear panel data models

Motivation

The regression model is an essential statistical model in
econometrics

However, regression lines from economic data often cannot
give a causal interpretation

Although explanatory variables might be correlated with
unobservables (endogenous)

The regression model assumes that such correlation does not
exist
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Motivation

Examples of expected endogeneity:

1 supply-and-demand simultaneous problem

Demand: qt =α1 + α2 pt + ε1t

Supply: qt =β1 + β2 pt + ε2t

2 Measurement error. The explanatory variable is wrongly
recorded and the error is correlated to the original variable.

3 Unobserved heterogeneity. If variables that have an effect on
Y and X are omitted then the explanatory variables are
correlated with the errors

Solutions:

Instrumental variables

Multiple regressions (2SLS)

However we often lack the data or instruments needed
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Motivation

‘The major motivation for using panel data has been the
ability to control for possibly correlated, time-invariant
heterogeneity without observing it’.

– Manuel Arellano (2003). ”Panel Data Econometrics”

Therefore we are going to study the use of the extra information in
a panel to estimate models with time-invariant omitted variables.
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Motivation

Suppose we have a cross-sectional regression of the form:

yj1 = β0 + xj1β + cj + εj1 with E (εj1|xj1, cj ) = 0

If cj is observed ⇒ OLS
If cj is omitted and Cov(xj1, cj ) = 0

β =
Cov(xj1, yj1)

Var(xj1)

If cj is omitted and Cov(xj1, cj ) 6= 0 then we need an
instrument zj such that Cov(zj , cj ) = 0

β =
Cov(zj , yj1)
Cov(zj ,xj1)

Suppose that either of these cases is available. However, we have
more data: (xj2, yj2).
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Motivation

yj1 =β0 + xj1β + cj + εj1

yj2 =β0 + xj2β + cj + εj2

where E (εjt |xj1,xj2, cj ) = 0.

Q: What do you get if you do yj2 − yj1?

yj2 − yj1 =β(xj2 − xj1) + εj2 − εj1

∆tyj =β∆txj + ∆εj

Then β is identified in the regression of the first difference.
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Motivation

yj1 =β0 + xj1β + cj + εj1

yj2 =β0 + xj2β + cj + εj2

where E (εjt |xj1,xj2, cj ) = 0.

Q: What do you get if you do yj2 − yj1?

yj2 − yj1 =β(xj2 − xj1) + εj2 − εj1

∆tyj =β∆txj + ∆εj

Then β is identified in the regression of the first difference.
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Panel data set

j t yjt x 1
jt x 2

jt . . . x k
jt

1 1 y11 x 1
11 x 2

11 . . . x k
11

1 2 y12 x 1
12 x 2

12 . . . x k
12

1 3 y13 x 1
13 x 2

13 . . . x k
13

2 1 y21 x 1
21 x 2

21 . . . x k
21

2 2 y22 x 1
22 x 2

22 . . . x k
22

2 3 y23 x 1
23 x 2

23 . . . x k
23

...
...

n 1 yn1 x 1
n1 x 2

n1 . . . x k
31

n 2 yn2 x 1
n2 x 2

n2 . . . x k
32

n 3 yn3 x 1
n3 x 2

n3 . . . x k
33
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Motivation

Panel data:

Each individual is observed several times

I.e. time series data for each individual

j = 1, . . . ,n individuals

t = 1, . . . ,T periods

Note:

A balanced panel has n × T observations.

All individuals need not be observed in all periods: an
unbalanced panel has less than n × T .

We assume throughout that n is large and T is fixed

The asymptotic properties are for n →∞ (not for T →∞).
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Motivation

Advantages of panel data:

More observations compared to cross-sectional data (where
T = 1).

Additional possibilities for dealing with endogenous variables
on the RHS when endogeneity is due to an unobserved
individual effect (e.g. ability):

yjt = β0 + β1x1
jt + . . .+ βkxk

jt + cj + εjt

cj is unobserved and correlated with one or more of the X’s
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Review: Multivariate linear model

Remember the multivariate linear model:

y = Xβ + ε

with assumptions:

OLS.1 E (ε|X) = 0
OLS.2 rank E (X′X) = k + 1 (X includes the intercept)

OLS.3 E (ε2|X) = σ2

and assume that we have a random sample.
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Review: Multivariate linear model

OLS.1 + OLS.2 ⇒
1 The OLS estimator β̂ = (X′X)−1X′y is consistent
2 unbiased

OLS.1 + OLS.2 +OLS.3 ⇒
1 The OLS estimator is asymptotically normal.

√
n(β̂ − β)→d N (0, σ2A−1) for A = E (X′X)

2 Therefore, the estimator is approx. normal in large samples
with variance

V̂ = AVar(β̂) = σ̂2(X′X)−1
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Review: Multivariate linear model

If the model looks like:

yj = xjβ + cj + εj

where cj is an unobserved individual effect that is correlated with
xj .

⇓

Then OLS.1 is violated and the OLS estimator becomes
inconsistent

Solutions:

OLS with proxies for cj or

Instrumental variables for xj

However panel data provides another solution to this...
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Linear panel data model (LPDM)

The basic unobserved effects model.

For observation i (individual i), the model is written as:

yjt = β0 + β1x1
jt + . . .+ βkxk

jt + cj + εjt , t = 1, 2, . . . ,T

Where cj is an unobserved time-invariant individual effect
which may or may not be correlated with xjt

xjt may vary across i or t or both

Depending on the assumptions we put on cj , the model above
can be consistently estimated with panel data using different
techniques
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Linear panel data model (LPDM)

The basic unobserved effects model:

yjt = xjtβ + cj + εjt , t = 1, 2, . . . ,T

Definition (Strict exogeneity of X )

E (yjt |xjt) = xjtβ ⇒ E (x′jtεjt) = 0 and E (x′jtcj ) = 0

⇓

E (cj |xjt) = E (cj ) (independence of xj and cj )
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Linear panel data model (LPDM)

The basic unobserved effects model:

yjt = xjtβ + cj + εjt , t = 1, 2, . . . ,T

Definition (Strict exogeneity of X conditional on the
unobserved effect)

E (yjt |xjt , cj ) = xjtβ + cj ⇔ E (εjt |xjt , cj ) = 0

⇓

E (x′jsεjt) = 0 (it is more than contemporaneous uncorrelation)
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Linear panel data model (LPDM)

The strict exogeneity assumption is more restrictive than the
conditional one.

We always used the strict exogeneity for the previous models
with cross-sectional data

However, when using panel data, this assumption can be
relaxed for the pooled OLS, RE, FE and FD models

Two questions to be answered:
1 Is the unobserved effect cj uncorrelated with xjt for all t?
2 Is the conditional strict exogeneity of X conditioned on cj

reasonable?
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Example: Agricultural Cobb–Douglas

yjt = xjtβ + cj + εjt Production function

Agricultural Cobb–Douglas Production Function

i : farm

t : time period

yjt : log production

xjt : log of a variable input (labour)

cj : soil quality (constant over time)

εjt : rainfall (outside farmer’s control)
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Example: Agricultural Cobb–Douglas

Farmer knows how to work different soils but the
econometrician doesn’t know variable cj

Therefore the econometrician will suggest wrong ways of
working the soil to the farmer if we only use period (xj1, yj1)
However, if we know variables for period 2

Moreover, the rainfall on the second period is unpredictable
from the first period (uncorrelation in the errors)

We can then estimate β using this information
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Example: Returns to education

Cross–sectional estimates of returns are not trusted because of
the omitted ability
i : individual and t : time period

yjt : log wage

xjt : Years of full-time education

cj : ability

β: returns to education

Taking the first difference does not work in this example, why?
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Example: Returns to education

xjt : Years of full-time education, is not time–variant

If education is the same in two periods for all individuals then
Var(∆X ) = 0
If it is not, the changes are too small so the new information
is not enough to get a good estimate of β
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Fill in this table

Assumptions Estimation procedure Pros and cons

Pooled OLS

FE

FD

RE
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Types of Models

yjt = β0 + β1x1
jt + . . .+ βkxk

jt + cj + εjt , t = 1, 2, . . . ,T

If we assume that cj is part of the error νjt = cj + εjt and
uncorrelated to xjt

Pooled OLS

Random effects

If we assume that cj may be correlated with xjt ,

Fixed effects,

First difference difference
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LPDM: Pooled OLS
A panel data model without unknown effects:

yjt = β0 + β1x1
jt + . . .+ βkxk

jt + εjt , t = 1, 2, . . . ,T

(yj ,xj ) has T rows that should be ordered chronologically
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LPDM: Pooled OLS
A panel data model without unknown effects:

yjt = β0 + β1x1
jt + . . .+ βkxk

jt + εjt , t = 1, 2, . . . ,T

(yj ,xj ) has T rows that should be ordered chronologically

If

POLS.1 E (εjtxjt) = 0
εjt and xjt are uncorrelated

POLS.2 rank E (
∑

t x
′
jtxjt) = k + 1

POLS.3 Strong homoskedasticity assumption

E (ε2t x
′
tX ) = σ2E (x′txt)

Eεtεsx′txt) = 0, t 6= s, t , s = 1, . . .T
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LPDM: Pooled OLS
A panel data model without unknown effects:

yjt = β0 + β1x1
jt + . . .+ βkxk

jt + εjt , t = 1, 2, . . . ,T

(yj ,xj ) has T rows that should be ordered chronologically

If

POLS.1 E (εjtxjt) = 0
εjt and xjt are uncorrelated

POLS.2 rank E (
∑

t x
′
jtxjt) = k + 1

POLS.3 Strong homoskedasticity assumption
E (ε2t x

′
tX ) = σ2E (x′txt)

Eεtεsx′txt) = 0, t 6= s, t , s = 1, . . .T

Then (See Wooldridge, Chapter 7.8.1),

The POLS estimator is consistent, asymptotically normal and
we can find the estimator of the asymptotic variance
The usual t-test and F-test are valid
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LPDM: Pooled OLS

The estimator looks like:

β̂POLS =

 n∑
j=1

T∑
t=1

x′jtxjt

−1  n∑
j=1

T∑
t=1

x′jtyjt


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LPDM: Pooled OLS

However, if we have individual unknown effects:

yjt = β0 + β1x1
jt + . . .+ βkxk

jt + cj + εjt︸ ︷︷ ︸
νjt

, t = 1, 2, . . . ,T

If:

POLS.1 E (νjtxjt) = 0
cj and xjt are uncorrelated, E (x′jtcj ) = 0 and
E (x′jtεjt) = 0

POLS.2 rank E (
∑

t x
′
jtxjt) = k + 1

POLS.3 Strong homoskedasticity assumption is not satisfied

Problem: the error terms νjt = cj + εjt ,
νj ,t−1 = cj + εj ,t−1: serially correlated
cov(νjt , νj ,t−1) = Var(cj ) ⇒ we need robust
variance matrix estimators and robust t-test
(Wooldridge, Chapter 7.8.4) to do the inference
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Pooled OLS in R

Package plm
Tell the program which indexes from your data set are for
individuals and which for time

data.plm = pdata.frame(mydata, c(”id”, ”time”))

Estimate the model using the formula as usual

model .pols < −plm(formula, data = data.plm,

model = ”pooling”, effect = ”individual”)

It returns: coefficients, residuals,fitted .values, vcov ,
df .residual and call
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Example: wagepan.dat
variable name variable label

--------------------------------------------

Individual definition

nr person identifier

year 1980 to 1987

educ years of schooling

exper labor mkt experience

expersq exper^2

union =1 if in union

married =1 if married

black =1 if black

hisp =1 if Hispanic

poorhlth =1 if in poor health

hours annual hours worked

lwage log(wage)

nrthcen =1 if north central

nrtheast =1 if north east

rur =1 if live in rural area

south =1 if south

Industry dummies

agric =1 if in agriculture

manuf =1 if in manufacturing

min =1 if mining

fin =1 if finance

tra =1 if transportation

trad =1 if trade

per =1 if personal service

pro =1 if professional & related

pub =1 if public administration

bus =1 if business & repair serv.

construc =1 if in construction

ent =1 if entertainment 32 / 68
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Example: wagepan.dat

variable name variable label

--------------------------------------------

Ocuppational dummies

occ1 =1 if professional, technical

occ2 =1 if mgr, official, proprietor

occ3 =1 if sales

occ4 =1 if clerical

occ5 =1 if craftsman, foreman

occ6 =1 if operative

occ7 =1 if laborer, farmer

occ8 =1 if farm laborer, foreman

occ9 =1 if service

Years dummies

d81 =1 if year == 1981

d82 =1 if year == 1982

d83 =1 if year == 1983

d84 =1 if year == 1984

d85 =1 if year == 1985

d86 =1 if year == 1986

d87 =1 if year == 1987
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Example: wagepan.dat

Is there a causal relationship between years of education and
log(wages)?

We know educ is endogenous but now we have data for
several years of each individual

Run a Pooled OLS of lwage on
educ, exper , expersq , union,married , black , hisp, pub
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Example: wagepan.dat

> library(plm)

> library(lmtest)

> data<-read.table("./Exercises/wagepan.dat", h=T)

> #Describe the data by the individual and time indexes

> data2<-pdata.frame(data, index=c("nr", "year"))

> # Pooled OLS

> wage.pool<-plm(lwage ~ educ+ exper+ expersq+union+ married

+ black+ hisp+ pub, data = data2, model = "pooling")
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Example: wagepan.dat

> summary(wage.pool)

Oneway (individual) effect Pooling Model

Call:

plm(formula = lwage ~ educ + exper + expersq + union + married +

black + hisp + pub, data = data2, model = "pooling")

Balanced Panel: n=545, T=8, N=4360

Residuals :

Min. 1st Qu. Median 3rd Qu. Max.

-5.2700 -0.2490 0.0332 0.2960 2.5600

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

(Intercept) -0.03437236 0.06467230 -0.5315 0.5951

educ 0.09936782 0.00468289 21.2194 < 2.2e-16 ***

exper 0.08913804 0.01012149 8.8068 < 2.2e-16 ***

expersq -0.00284682 0.00070771 -4.0226 5.854e-05 ***

union 0.17990425 0.01721460 10.4507 < 2.2e-16 ***

married 0.10762117 0.01570528 6.8525 8.271e-12 ***

black -0.14382268 0.02356305 -6.1037 1.126e-09 ***

hisp 0.01565030 0.02081966 0.7517 0.4523

pub 0.00354610 0.03747396 0.0946 0.9246

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 1236.5

Residual Sum of Squares: 1005.8

R-Squared : 0.18659

Adj. R-Squared : 0.1862

F-statistic: 124.759 on 8 and 4351 DF, p-value: < 2.22e-16
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LPDM: Fixed effects (FE)

If cj is correlated with xjt , pooled OLS fails (inconsistent
estimates)

FE estimation allows cj to be correlated with xj .

Basic idea:

We treat cj as a parameter to be estimated. This is possible
with several observations for each individual

In practice:

1 We transform data by subtracting individual averages:
demeaned variables

2 This removes cj from the equation.

3 Run POLS on demeaned variables
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LPDM: Fixed effects (FE)

Formally, averaging:

yjt = 1β0 + xjtβ + cj + εjt

the average for individual i over time:

ȳj = 1 · β0 + x̄jβ + cj + ε̄j

where ȳj = T−1
∑

t yjt .
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LPDM: Fixed effects (FE)

The demeaned equation:

yjt − ȳj = (xjt − x̄j )β + (εjt − ε̄j )

Which we just write as:

ÿjt = ẍjtβ + ε̈jt

This ”within” transformation has eliminated the time-invariant
unobserved effect cj .

The β̂FE is the pooled OLS estimator from the above
regression

Problem: we also eliminate other time-invariant variables
among the X and the intercept (example: educ)
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LPDM: Fixed effects (FE)

Pooled OLS on the transformed equation: ÿjt = ẍjtβ + ε̈jt

yields the consistent estimator

β̂FE =

 n∑
j=1

T∑
t=1

ẍ′jt ẍjt

−1  n∑
j=1

T∑
t=1

ẍ′jt ÿjt


If

FE.1 Strict exogeneity conditional on the unobserved
effect

E (εjt |xjt , cj ) = 0
E (xjt , c) may be 6= 0

FE.2 rank
∑T

t=1 E (ẍ′jt ẍjt) = k
Therefore, the model does not include intercept
or time-invariant explanatory variables

40 / 68



Motivation Linear panel data models

LPDM: Fixed effects (FE)

To ensure the efficiency of the estimator:

FE.3 Var(εjt |xj , cj ) = σ2IT
Homokedaticity: Var(εjt |xj , cj ) = σ2

Serially uncorrelated errors:
cov(εjtεjs |xj , cj ) = 0, s 6= t

41 / 68



Motivation Linear panel data models

LPDM: Fixed effects (FE)

Pros:

We can consistently estimate partial effects in present of
time-constant omitted variables

Cons:

We cannot include time-invariant factors such as gender ,
race, industry of a firm, etc. in xjt

This can be a drawback in certain applications

However, if our application uses only time-varying explanatory
variables then this is the model to use

Variables such as educ can be constant for some periods but
must vary in some part of the sample.

42 / 68



Motivation Linear panel data models

LPDM: Least squares dummy variables (LSDV)

A way around the constraints from FE.2:

yjt =θ1 d1jt + . . .+ θN dNjt + wjtδ + εjt

d1jt , . . . , dNjt are individual dummies so that dijt = 1 if i = j
and zero otherwise

zj is the vector of time constant variables (gender, race, ...)
not in the model because they are multicollineal with the
dummies

wjt is the vector of time-varying variables
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FE in R

The whole process of demeaning the variables and running the
OLS on the transformed equation is done by the command:

plm(formula, data = data.plm,model = ”within”)

> wage.fe <- plm(lwage ~ educ + exper + expersq +

+ union + married + black + hisp + pub, data = data2,

+ model = "within")
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FE in R
> summary(wage.fe)

Oneway (individual) effect Within Model

Call:

plm(formula = lwage ~ educ + exper + expersq + union + married +

black + hisp + pub, data = data2, model = "within")

Balanced Panel: n=545, T=8, N=4360

Residuals :

Min. 1st Qu. Median 3rd Qu. Max.

-4.17000 -0.12600 0.00992 0.15900 1.47000

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

exper 0.11645698 0.00843090 13.8131 < 2.2e-16 ***

expersq -0.00428857 0.00060544 -7.0834 1.668e-12 ***

union 0.08120303 0.01931592 4.2039 2.683e-05 ***

married 0.04510615 0.01831141 2.4633 0.01381 *

pub 0.03492668 0.03860819 0.9046 0.36571

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 572.05

Residual Sum of Squares: 470.1

R-Squared : 0.17822

Adj. R-Squared : 0.15574

F-statistic: 165.256 on 5 and 3810 DF, p-value: < 2.22e-16
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LSDV in R

It is using pooling but you have to create hte dummy variables.
Check the program.
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LPDM: First difference (FD)

yjt = δ t + xjtβ + cj + εjt t = 1, . . . ,T

An alternative to fixed effects is to use first differences.

This also eliminates cj from the above equation by taking first
differences

Transformed equation

∆yjt = δ + ∆xjtβ + ∆εjt t = 2, . . . ,T

where ∆yjt = yjt − yj (t−1)

The pooled OLS estimator on the transformed equation is
consistent
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LPDM: First difference (FD)

OLS on the transformed equation: ∆yjt = yjt − yj (t−1) yields
a consistent estimator

β̂FD = (∆X ′∆X )−1∆X ′∆Y

If

FD.1 Strict exogeneity conditional on the unobserved
effect

FD.2 rank
∑T

t=2 E (∆x′jt∆xjt) = k
The model does not include intercept or
time-invariant explanatory variables
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LPDM: First difference (FD)

Efficiency if

FD.3 Var(∆εj |xj1, . . . ,xjT , cj ) = σ2
∆εIT−1

Homokedaticity: Var(εjt |xj , cj ) = σ2

The first difference of the errors is serially
uncorrelated

If this condition is violated then, we can compute a robust variance
matrix for inference.
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LPDM: First difference (FD)

∆yjt = δ + ∆xjtβ + ∆εjt

FD exploits changes between two periods to estimate
parameters (one period of observations is lost!)

FE exploits deviations from average over time

With T = 2, FE and FD are identical

If time variation is small then we get imprecise estimates
(educ)

εjt uncorrelated with xj (t−1), xjt and xj (t+1) is the necessary
condition for consistency

If ∆εjt = εjt − εj (t−1) is serially correlated ⇒ we need robust
variance estimator; see equation (10.70) in Wooldridge
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FD in R

plm(Y X , data = data.plm,model = ”fd”)

>wage.fd<-plm(lwage ~ educ+ exper+ expersq+union+ married
+ black+ hisp+ pub, data = data2, model = "fd")
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FD in R

> summary(wage.fd)

Oneway (individual) effect First-Difference Model

Call:

plm(formula = lwage ~ educ + exper + expersq + union + married +

black + hisp + pub, data = data2, model = "fd")

Balanced Panel: n=545, T=8, N=4360

Residuals :

Min. 1st Qu. Median 3rd Qu. Max.

-4.5800 -0.1460 -0.0124 0.1340 4.8400

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

(intercept) 0.1154086 0.0195893 5.8914 4.161e-09 ***

expersq -0.0038755 0.0013863 -2.7956 0.005207 **

union 0.0425429 0.0196588 2.1641 0.030521 *

married 0.0377588 0.0229311 1.6466 0.099719 .

pub 0.0421258 0.0409964 1.0275 0.304228

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 751.19

Residual Sum of Squares: 747.83

R-Squared : 0.0044794

Adj. R-Squared : 0.0044735

F-statistic: 4.28584 on 4 and 3810 DF, p-value: 0.0018406

52 / 68



Motivation Linear panel data models

LPDM: Random effects (RE)

One problem with FE and FD is that they eliminate all
time-invariant explanatory variables, e.g. race, gender, etc.

Often, however, we are interested in the effects of these
variables

If cj is uncorrelated with xjt , we can used pooled OLS on the
original model.

However, if we are willing to impose more structure (more
assumptions on the model). Then, we can get more precise
estimates with RE estimation
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Motivation Linear panel data models

LPDM: Random effects (RE)

yjt = xjtβ + cj + εjt

RE.1 A) E (εjt |xjt , cj ) = 0 for t = 1, . . .T
B) E (cj |xj ) = E (cj ) = 0 (independence)

RE.2 rank
∑

t E (x′jtΩ
−1xjt) = k + 1

Assumption RE.1 A) is the strict exogeneity of xjt conditional
on the unobserved effect

Assumption RE.1 B) means that xj and cj are independent
(this implies uncorrelated)

Therefore νjt = εjt + cj is uncorrelated with xjt

However there is a serial correlation in νjt and therefore
pooled OLS will not be efficient.
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Motivation Linear panel data models

LPDM: Random effects (RE)

Idea: Unless the OLS, the Generalised Least Squares (GLS) can
exploit the serial correlation of ν

I.e. we impose some ”structure” (assumptions) on the errors
for each person, and

use repeated observations for each individual to get more
efficient estimates
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LPDM: Random effects (RE)

Structure assumptions (homoskedasticity)

RE.3 A) E (εjtε′jt |xj , cj ) = σ2
ε IT

B) E (c2
j |xj ) = σ2

c

Assumption A) means:

errors are homoskedasticity
errors are not autocorrelated. I.e. for each individual i the error
term at time t is not correlated with previous or future errors

Assumption B) means that cj is homoskedastic (its variance
does not change for each individual)
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Motivation Linear panel data models

LPDM: Random effects (RE)

yjt = xjtβ + cj + εjt

Define: νjt = cj + εjt

Under RE.1 + RE.3:

Var(νjt) = Var(cj + εjt) = σ2
c + σ2

ε

Cov(νjt , νjs) = Cov(cj + εjt , cj + εjs) = σ2
c
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Motivation Linear panel data models

LPDM: Random effects (RE)

Hence, the co-variance matrix of νjt for person i is:

Ω = E (νj ν ′j ) =


σ2

c + σ2
ε σ2

c . . . σ2
c

σ2
c σ2

c + σ2
ε . . .

...
...

. . . σ2
c

σ2
c σ2

c + σ2
ε


This matrix is the same for all individuals

There is no correlation across error terms for different
individuals
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Motivation Linear panel data models

LPDM: Random effects (RE)

For the standard linear model, without the cj :

Ω = E (νj ν ′j ) =


σ2
ε 0 . . . 0

0 σ2
ε . . .

...
...

. . . 0
0 σ2

ε

 = σ2
ε IT
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Motivation Linear panel data models

LPDM: Random effects (RE)

The random effect estimator:

β̂RE =

 n∑
j=1

x′j Ω̂
−1xj

−1
n∑

j=1

x′j Ω̂
−1yj

NB! We need to estimate Ω to obtain this estimator
(Wooldridge, Chapter 10.4.2)

If Ω = σ2
ε IT then the RE estimator is the OLS estimator
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Motivation Linear panel data models

LPDM: Random effects (RE)

In summary:

OLS and RE require cj to be uncorrelated with xjt

This is a strong (even unrealistic) assumption if we believe
that unobservable effects are indeed present.

RE can get more efficient estimates than OLS ? but do so by
adding more assumptions (RE.3)
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Motivation Linear panel data models

RE in R

plm(formula, data = data.plm,model = ”random”)

You can choose amongst 4 methods to estimate Ω, by default
random.method = ”swar”. The other options are
”walhus”, ”amemiya” and ”nerlove”.

> wage.re<-plm(lwage ~ educ+ exper+ expersq+union+ married
+ black+ hisp+ pub, data = data2, model = "random",
random.method="swar")
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Motivation Linear panel data models

RE in R
> summary(wage.re)

Oneway (individual) effect Random Effect Model

(Swamy-Arora's transformation)

Call:

plm(formula = lwage ~ educ + exper + expersq + union + married +

black + hisp + pub, data = data2, model = "random", random.method = "swar")

Balanced Panel: n=545, T=8, N=4360

Effects:

var std.dev share

idiosyncratic 0.1234 0.3513 0.539

individual 0.1055 0.3248 0.461

theta: 0.6429

Residuals :

Min. 1st Qu. Median 3rd Qu. Max.

-4.5800 -0.1450 0.0234 0.1860 1.5400

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

(Intercept) -0.10431124 0.11083404 -0.9411 0.3466813

educ 0.10102372 0.00892187 11.3232 < 2.2e-16 ***

exper 0.11178514 0.00827093 13.5154 < 2.2e-16 ***

expersq -0.00405745 0.00059198 -6.8540 8.189e-12 ***

union 0.10641338 0.01786690 5.9559 2.791e-09 ***

married 0.06254648 0.01677617 3.7283 0.0001952 ***

black -0.14400263 0.04764392 -3.0225 0.0025218 **

hisp 0.01972690 0.04263026 0.4627 0.6435709

pub 0.03015542 0.03646707 0.8269 0.4083267

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 656.8

Residual Sum of Squares: 539.65

R-Squared : 0.17837

Adj. R-Squared : 0.178

F-statistic: 118.07 on 8 and 4351 DF, p-value: < 2.22e-16
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Motivation Linear panel data models

Compare estimators of educ

education significant? expersq significant?

Pooled OLS

FE

FD

RE
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Motivation Linear panel data models

FE vs FD

With T = 2:

FD and FE estimates are the same

FD is easier to implement

We can apply heteroskedastic-robust inference directly in the
FD

With T > 2:

FE is more efficient under assumption FE.3 (εjt are serially
uncorrelated)

FD is more efficient when εjt follows a random walk

Correlations between εjt and xjt tend to appear when there
are measurement errors, omitted variables or simultaneity.
This causes FD and FE to be inconsistent
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Motivation Linear panel data models

RE vs FE

When xt does not vary much over time, FE and FD can lead
to imprecise estimates

If E (cj |xjt) = E (cj ) then the RE has smaller variances than
the FE or FD estimators

Comparing between the RE or the FE model can be done with
the Hausman test

FE is consistent when cj is correlated with xjt , but RE is
inconsistent
The models should not have time dummies or time effects.
Hausman null hypothesis H0 : E (cj |xjt) = 0
In R: phtest(model .fe,model .re) or phtest(formula, data)
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Motivation Linear panel data models

Hausman test in R

> phtest(wage.re, wage.fd)

Hausman Test

data: lwage ~ educ + exper + expersq + union + married
+ black + hisp + pub
chisq = 66.9911, df = 4, p-value = 9.791e-14
alternative hypothesis: one model is inconsistent

The null hypothesis is rejected, then the omitted variables cj are
correlated with X and FE is preferible to RE.
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Motivation Linear panel data models

Summary

If there is no individual unknown effects ⇒ Pooled OLS is the
most efficient estimator
If there are individual unknown effects cj :

If cj is uncorrelated with xj

POLS is consistent but inefficient (POLS.3 is not satisfied)
Random effects is the most efficient estimator if RE .3 is
satisfied

If cj is correlated with xj ⇒
The POLS is inconsistent
Then FE or FD are the best methods

If xj contains time-invariant variables ⇒ RE or LSDV
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