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@ The likelihood function

@ Maximising the log-likelihood
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Motivation

o Likelihood means probability

@ Assuming certain probability distribution, what are the
parameters of it for a particular sample?
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Motivation

@ We have coin A and coin B? Would you bid head of tails in
either of them?

@ What is the value of p for coin A? and for coin B?
o After 10 throws:

> set.seed(42)
> A=rbinom(10, 1, 0.7)
> B=rbinom(10, 1, 0.3)

e coin A: 5 heads and 5 tails
o coin B: 4 heads and 6 tails

@ What is the estimated probability of head for each coin?



Estimation MLE properties Results Pitfalls

Motivation

Each thrown follows a Bernoulli distribution:

Y = { (1) (1 f p) Fi(y) = p¥(1—p)t—¥

The joint distribution function of our sample {y1,..., 410}, or
likelihood function:

10

Fot o (Y15 -+ -5 Y10) = H p¥(1— p)l_yJ independence
j=1
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Motivation

The loglikelihood function:

10

Up) = fyrroono (W1, -+ 910) = _ [y log(p) + (1 — g;) log(1 — p)]
j=1

=5log(p) + 5log(l — p) coin A
=4log(p) + 6log(l — p) coin B
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Motivation

What is the value of p that maximises the loglikelihood function

of my sample?

Take first derivative and
Coin A:

5
D
Coin B:

SHIS

equal to zero.

— =0=psa =05
1-p

6
—— =0=pp =04
1—p
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Motivation

@ Let us throw the coin again, after 100 throws:
> set.seed(42)
> A=rbinom(100, 1, 0.7)
> B=rbinom(100, 1, 0.3)

o coin A: 66 heads and 34 tails
o coin B: 37 heads and 63 tails

@ What do you think the probability of getting head for each
coin is?

@ The maximum likelihood estimator of each coin are:
P4 = 0.66 and pp = 0.37 which is closer to reality.

Pitfalls
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The likelihood function

Assume we have a sample of variables y and X
We know the conditional distribution of the y variable given X

The particular parameters of this distribution are unknown
and depend on (3

Therefore, estimating the parameters of this distribution will
provide estimates for 3

These estimates are found as the parameters that most likely
have generated the observed sample

Find the values that approximates the sample distribution best

f
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MLE set—up

o We have a sample {(y;,x;)} with j =1,2,...,n

@ Assume a conditional density function of y; given x;
f(yilx)

o Note that we make assumptions on the shape of the sample
distribution

@ In OLS we only make assumptions on the shape of the
expectation, which is a most less restrictive assumption

Pitfalls
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MLE set—up

The conditional log—likelihood function for observation j is

t;(B) = log f(y;1x;,8)
The conditional log—likelihood function for the whole sample is
(B) =D (8 =) logf(ylx;, 8)
j=1 j=1

and the maximum likelihood estimator is the value that minimises
the function above

ML -
B = argmgleogf(yjlxj’ﬁ)

g=1

Pitfalls
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MLE for Index models

y takes values 0 and 1 (Bernoulli) with probability
p = Py =1|X) = G(x;8)
Its conditional probability mass function is:
Fyilx;,8) = p" (1= p;)' ™%, 4 =0,1

We have made the assumption of the distribution of the sample

The conditional log—likelihood function for observation j is

t;(B) = log f(yjlx;,B) = y; logp; + (1 — y;) log(1 — py)

f
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MLE for Index models

The conditional log—likelihood function for the whole sample is

ZE Z yjlog G(x;8) + (1 — y;)log(1 — G(x;0))]

=il
The ML estimator is the one that maximises the conditional
log—likelihood function.
~ ML
B"" — argmax(8)

How do we maximise a function?
e Find maximum (all first derivatives w.r.t 3; = 0)

o If second derivative < 0 = maximum

Pitfalls
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MLE for Index models

~ ML
B solves

(x,8) , B
6/87, Z G( X],@ )(1 — - G(x,8)) G'(x;B)zy =0

There are k + 1 of these equations... one for each (3;.

[J4¢¢}
6}30) 0
OZ. :
s@)=| F2 [=]0
o0(8) 0
OBk
Computer work!!!! g
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MLE for Index models

The parameter 3 is a maximum, i.e. it does maximises the log-lik
function, if the matrix of second derivatives of the log-lik, the

Hessian:

2%(B)  8%4(B) 22¢(B)
0B? 0610062 03100y
2%(B)  92(B) 2%¢(B)

0820, 062 0320,
H(B) = 52. B1 33 52. Bk
2up)  2up) 524(8)

0pLOB1  0BLOB2 062

is negative definite.

Pitfalls
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MLE for the logit model

y is binary with probability p; and we assume we can fit a logit
model to our data.

~ML
The 3  estimator solves

Ax;8) (% B) T =
EAXJB -G @) 9P =

There is not explicit solution, so we would need numerical methods
to solve this equation such as the Newton—Raphson iterative

procedure. 4
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MLE for the probit model

y is binary with probability p; and we assume we can fit a probit
model to our data.

pj=2(x;B8) j=1,...,n
The ML estimator is the § that solves

> o OB By = 0
= j

There is not explicit solution, so we would need numerical methods
to solve this equation such as the Newton—Raphson iterative

procedure. 4o
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Exercise (5 minutes)

We are using a probit model:

O Assume that x;3 = By + (1 X1; and we have the following
sample:

oy1=1 an=1
@ Yo = 07 I12 = 0.5
o ys=1, ;3 =2
Q@ Write the log—likelihood function of glm model assuming that
G is the identity function.

Pitfalls
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MLE properties
If
@ Distribution of y given X is correctly specified
o Parameters are identified (not like the variance in the probit)
@ The log-lik is smooth (two derivatives)
Then
o Consistent (Theorem 13.1)
o Asymptotically normal (Theorem 13.2)
@ Asymptotic efficiency

19 /47



Estimation MLE properties Results Pitfalls

MLE properties

Two key concepts:
@ The Score Vector(dimension (k4 1) x 1)
e The vector of first derivatives of the log-lik with respect to
parameters
o Used for the first order conditions (f.o0.c.)
o The Hessian Matrix (dimension (k + 1) x (k + 1))
o The matrix of second derivatives (including cross derivatives)
of the log-lik with respect to parameters
o Used for the second order conditions and for the variance of
the estimators.
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Score vector

The score vector of the log-lik for observation i:

o [94(B) 94(8) a0, (8)\’
S](ﬂ)—( 960 " 0B 9By >

The first order condition of the max log-lik is that summing the

individual scores (j = 1,...,n) is =0:
S "8 =048\
;SJ( (Z dBo ]231 98, ,...,]Z; 35s ) =(0,0,...,0)

f
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Hessian

The Hessian matrix of the log-lik for observation ¢:

H;(8) = Vgs;(8) = H=> H;,
=l

The Hessian is a (k+ 1) x (k + 1) matrix

It is symmetric because

9%4;(B) _ 9%4;(B)
03132 03251

The Hessian is negative definite

(]

(7]

(7]

A variance matrix is positive definite.

(7]

Pitfalls
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Conditional information matrix

It can be shown that,

—EB[H;(B)x;] = Var[s;(B)lx;] = A(x;, 8)

When 3 is the true value that minimises the log-lik:

7E(‘[{j(5true)) = E(Sj (ﬁtrue)sj (ﬁtrue),) = Ao
because Bls; (Byue)ls] = 0
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Consistency (Theorem 13.1)

If
@ Distribution of y given X is correctly specified
o Parameters are identified (not like the variance in the probit)

@ The log-lik is continuous

Then, L
plim B = By 3 N — 00

Pitfalls
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Asymptotic normality (Theorem 13.2)

If
@ Distribution of y given X is correctly specified
o Parameters are identified (not like the variance in the probit)

@ The log-lik has two derivatives

VNB" = Buue) =2 N(O, 45")
where Ay is a positive definite matrix.

The Hessian is a negative definite matrix, so the negative sign
makes it positive definite, as the variance:

_E(}IJ (ﬂtrue)) = E(Sj (IBtrue)Sj (/Btrue),)

Pitfalls
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Asymptotic variance of estimator

The asymptotic variance of the estimator is:
~ ML _ _
VM= AVar(B™) = Ayt /n = [—E(Hj(Bye))) ™ /1

But, B, is unknown... three possible estimators:

_ —1
=
or
- n 71
= |3 58" 8™y
=
or
. Lo
- Z_E[H<yj7XJ7BML)|Xj] 26 /47
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Asymptotic variance of estimator

Which variance estimator we choose?

@ It is up to you.

@ The first estimator requires second order derivatives of the
log-lik and it is not guaranteed to be positive definite

o If it is not pos. definite then the se of the estimators will not
be defined (sqrt)

@ The second estimator is always positive definite. However, it

is not very good in moderate sample sizes

o If we know the conditional expectation close form, this is the
most attractive estimator.

o Positive definite (it depends on the informatoin matrix)
o Behaves well in moderate samples
o Usually only the first derivative of the log-lik is required

Pitfalls

f
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MLE for binary models

@ The score vector:

G'(x;8)[y; — (x]ﬂ)]
Gx;B)[1 — G(x;8)]

@ The expected value of the Hessian conditioned on x;:

[G'(x;8))*x)%;
G(x;8)(1 - G(x;8))

sj(B) =

—B[H;(B)Ix)] =

A(Xj,ﬁ)

@ Hence, we use the third variance matrix estimator in this case.

@ What are the standard errors?

Pitfalls
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MLE for binary models

o For large samples:

N(B, VML)

=

where .

. " G’ X]ﬁ)] X/ X
ML _ %
Z B)(1 — G(x;5))

the standard errors are the square root of the estimated
variance.
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Reporting result

@ The coefficient estimates, standard error and the value of
log-likelihood function is given by R

@ The marginal effect of the coefficients depends on the function
G, so the values 3 do not explain the effect of X on y

@ The sign of the coefficients correspond with the sign of the
effect

Pitfalls
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Estimating marginal effects

The marginal effect of variable x; continuous:

logit : () e

[1 +exp(—Xf)
probit :  ¢(X3)5;

They depend on 3 and X

Average of the marginal effects, take the mean of those
quantities

(4]

(7]

(]

Marginal effects of the sample average of X

(]

The marginal effects can be compared with the coefficients of%’
the LPM.
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Estimating marginal effects

The marginal effect of variable x; discrete, from 0 to 1:
Logit:

A(ﬁo:i- Ble_‘F e BjrlXj_—l + BJ} + ﬂAj—i-lij-l +...+ BkAXk_)
—ABo+ i Xi+ ...+ 51 X1+ B0+ Bj11 X1 + ... + B Xy)

Probit:

‘b(ﬁoﬁ Bl:)_(l:i‘ 000 qF Bjr1)_(j;1 = BJ} - /éj—i-l)_(jj-l I=500aF Bk)_(k)
—®(Bo+ L1 Xai+ ...+ 81X 1+ B0+ Bj1 X1+ ..+ BeXy)

o Average of the variables X
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Goodness of fit

Goodness of fit

Correctly predicted outcomes
Deviance

Pseudo R?

e 6 o6 o
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Test hypothesis on parameters

e For individual effects
o t-test
o For q linear restrictions

F-test not applicable

Wald test

Likelihood ratio (LR) or Deviance
Lagrange multiplier (LM)

®© 6 o o
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Likelihood ratio

The unrestricted model:

y=G(Bo+ ix1+ ...+ Brxi) + €

The restricted model (Hy : 51 = 05 = B = 0, three restrictions
q=3)

y = G(Bo+ Paxo + ...+ Baxa + PeX6 + ... + Pr—1Xp—1) + €

Deviance = LR = 2[lynres — Lres| ~ X(21

Large LR value = evidence against Hy
In R, deviance test: anova(model.rest, model.unres, test="chisq", %’

lower.test=F)
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Wald test

y =00+ Bix1+ ...+ Bs5X5 + €
and we are testing

Hy:B2=05=0
This can be written:

Hy:RB=r

Pitfalls
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Wald test
The test statistics:

W = (R3 - RB)(RVR)'(RB - Rf) ~* xj
where V is the estimated asymptotic variance of B

Large W value = evidence against Hj

37 /47
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Lagrange multipliers test

(4]

Let us have g restrictions (for example in Hy : o = 35 = 0,
q=2)
The estimates of the unrestricted model are 3

(]

The estimates of the restricted model are B

(7]

Test statistics

(7]

/

The estimate V can be chosen amongst

35 or — I:Ij or ;1]-
J°

(7]
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LM test

There is a special way of getting this test for the Index models.
@ We have ¢ restrictions
@ The restricted model isy = G(VB) +n

@ V contains the k£ + 1 — ¢ variables of X after removing the ¢
restrictions

(7]

Z contains the ¢ variables of X that we removed for the
restricted model
X =(V,z)
For example: y = o + S1x1 + BoXa + B3%X3 + B4x4 + B5X5 + €
and we want to test Hy : B9 = (B4 = 0 then

o V= (1,X1,X37X4) and Z = (XQ,X5)

(7]

(]

f
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LM test

© Estimate the restricted model and get the residuals
=1y — G(V;p)
@ Construct the standarised residual

F=— 4 = where G; = G(V;()
Gj(l - Gj)
© Do the regressions
. Gj Gj
T’j = — = V] + = = Zj + Uj
Gi(1—-Gj) Gi(1—-Gj)
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LM test

o We regress the residuals of the restricted model (without Z)
on the standarised V and Z variables.

(]

If there is no endogeneity, the V' cannot explain the residuals

(7]

If Hy is true, the Z cannot explain the residuals

(7]

We take the R? of the last regression and calculate the LM
test statistics

(]

LM statistics is calculated as n * R? ~ X?I

(7]

If LM is large then we will reject Hy
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Model Misspecification

@ Heterogeneity
@ Non-normality

o Endogeneity

42 /47
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Omitted variables - neglected heterogeneity

If the omitted variables are exogeneous, we are neglecting
heterogeneity.

Let us think of the latent variable model:

yv'=XB+vc+e X, c~N(0,1)

where ¢ is an unobserved variable with mean zero and variance 72.

The probit model: P(y = 1|X, ¢) = ®(X5 + 7¢)
Case 1: ¢ and X are independent
Case 2: ¢ and X are dependent

43 /47
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Case 1: ¢, X independent

@ The error term in the latent model is v¢ + € with mean zero
and variance 0% = 272 + 1

@ So when we ommit ¢ from the model, we are estimating (/o
without knowing

@ This is a problem with the probit model, due to its nature
o Similar problem when E(e?) # 1

@ Is this a great problem? Not so much, because (3 is not our
partial effects.

@ Structural partial effects do not have this problem either.

44 /47
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Case 1: ¢, X independent

@ The partial effect of variable x; is:

OP(y =1|X, ¢)
6Xj

= (X8 + )b

@ But because ¢ is unknown, we estimate:

o (x2) &
(o) g

which can be proven to be the APE across the population ¢,

B;

o

EB(X° +195] = ¢ (x°2)

where X9 is a fixed value of X.

Pitfalls
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Case 1: ¢, X independent

In summary, the omitted variable problem, when this variable is
independent of X:

@ The partial effects of certain x; cannot be estimated
consistently with the probit model

@ The APE are consistently estimated by probit (if ¢ is normally
distributed)

46
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Case 2: ¢, X dependent - endogeneity

o If ¢ is correlated with X or dependent in any other way:

omission of ¢ is a serious problem.
@ We cannot get consistent estimates of the APE
@ We can find instruments z and run 2SLS on the LPM

o Rivers and Vuong's 2-step approach.

Pitfalls
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