PROBLEM SET 7

Problem 1 (Probit Selection Model)

Consider the following Probit selection model:

Y, = Y- Yf

Y = Xi6,+ Uy,

&
[

1Yy > 0],

YVQ* = X262 + U27

from which one obtains a random sample of observations of (Y7, Y2, X7, X3), denoted { (y1:, y2i, T1:, T2i) : @
where Y}* is the outcome variable of interest and the realization of Y5 determines whether
Y1 =Y orY; =0. Assume that (U, Us) and X = (X7, X») are independent, and that (Uy, Us)
are bivariate normally distributed, each with mean zero, variances var (U;) = var (Uz) = 1,

and covariance cov (Uy, Us) = p

1. What is the selection probability Pr {Y> = 1|X = 2}? How can you consistently estimate

the parameters of this equation? [5]

2. Solve for the conditional density for Y given Y2 = 1 and X. Whatis E [V1]Y> = 1, X = z|?
[5]
Hint: By joint normality of U; and Us,, the conditional distribution of U; given U > ¢

can be deduced as a function of ¢ and p as

1 o0
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g(us;e,p) = f(ur|Us > ) =

where ¢ (-) and ® () denote the standard normal pdf and cdf, respectively. You may use

the function g (u1; ¢, p) in your answer.

Furthermore, recall that the distribution of U; conditional on Uy = ¢ is
U1] (Uy = ¢) NN(pc, 1— p2) ,

with conditional pdf

fUl‘U2 (UI|U2 ) C) B \/11— p2¢ (\1?1_—p:2> )



i.e. the pdf of a normal random variable with mean pc and variance 1 — p?. Because U,

is normally distributed with mean zero and unit variance,

¢ (c)

E[U1|U1 > C} = 1—7(1)((3)

. What is the log likelihood for for this model? [5]
Hint: You may use the function g (u1; ¢, p) defined in the previous hint in your answer.

. Propose two different ways to consistently estimate 5,. Which provides a more efficient

estimator asymptotically? [5]

. Are the parameters 3, 3, p identified? Do you need to impose any additional conditions

for identification? [5]

. Why might one wish to test the hypothesis that p = 07 What implication would this
have? [5]



Problem 2 (Applied Probit Selection Model)

We use the dataset RandHIE from package sampleSelection coming from the
RAND Health Insurance Experiment (RHIE). For more details read the R and
Wikipedia help on the experiement. The data extract comes from Deb and
Trivedi (2002), who modeled the number of outpatient visits to a medical doctor
and to all providers using count data models.

Here instead we model annual health expenditures. The regressors are can
be broken down into health insurance variables ( loge, idp, Ipi, and fmde),
socioeconomic characteristics (linc, Ifam, xage, female, child, fchild, black and
educdec) and health status variables (physlm, disea, hlthg, hlthf and hlthp).
The analysis is using only the second year of data.

The dependent variable y is annual individual health expenditures (meddol).
We are especially interested in the effect of coinsurance rate logc on the individ-
ual expenditure (http://en.wikipedia.org/wiki/Co-insurance). An econometric
model needs to take account of two complications: (1) Health expenditures are
zero for 23.2% of the sample and (2) the positive health expenditures are very
right-skewed with a mean of 221thatismuchlargerthanthemedianof53. The
logarithmic transformation eliminates this skewness, with a mean of 4.07 close
to the median of 3.96 and the skewness statistic falls from 24.0 to 0.3. The
kurtosis is 3.29, close to the normal value of 3.

We focus on modeling Iny for those with positive medical expenditures. We
model the data with a Tobit II model where the selection is given by ys is the
indicator of positive expenditure (binexp), and y; is Inmeddol. Note that it is
not meaningful to consider the value of y; when yo = 0. In that case the annual
individual helth expenditure is 0 with no defined logarithm.

1. Explain why we believe there might be behavioural selection in this data
set.

2. Read the data in your memory and understand what each variable mean

3. Create a subsample using only the variables from year two and make sure
that your subsample does not have NA in variable educdec

4. Assumme X = X; and run Procedure 19.1
5. Estimate the model with Maximum likelihood

6. Interpret your results



