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Outline

Omitted variables

Consequences: Biased and inconsistent OLS estimator
Solution: Proxy variables or instrumental variables (IV)

Measument errors
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Simultaneity

Consequences: Biased and inconsistent estimators
Solution: IV

A more general solution:
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Source of Endogeneity: Measurement Error

The dependent variable is erratically measured.

Because this error is uncorrelated with the regressors ⇒ OLS is
fine

One of the regressors is erratically measured.

If the error is uncorrelated with true variable ⇒ OLS is fine
If the error is correlated with the true variable, then we need
an IV
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Measurement error in the dependent variable

Let define the correctly specified model:

y? = β0 + β1X1 + . . . βkXk + ε

We only observe y = y? + e0, then the incorrect model:

y = β0 + β1X1 + . . . βkXk + ε + e0︸ ︷︷ ︸
η

If E (Xiη) = 0 for i = 1, . . . , k
(No correlation between regressors and committed error, e0)

⇒ the OLS estimators are consistent.
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Measurement error in the dependent variable

Example (Young and Bielinska-Kwapisz, 2002) on alcohol
consumption in the US (different states).

consumption = β0 + β1 price + other variables + ε

The price recorded for a six pack of Heineken, 750 ml of J&B
Scotch and 1.5 l bottle of Gallo or Livingston Cellars Chablis.

The error made in the price is correlated with consumption
because this price variable does not represent the type of
drinks used for alcohol abuse.

Also simultaneity (higher demand -> higher price)

OLS inconsistent and biased, underestimating how
consumption depends on price.

Instruments for price: beer taxes, distilled spirit taxes and
state markups
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Measurement error in a regressor

Let us assume that X?
k is the true value of this regressor. However,

we observe Xk = X?
k + ek ( price).

The correctly specified model:

y = β0 + β1X1 + . . . βkX?
k + ε

The incorrect model:

y = β0 + β1X1 + . . . βkXk + ε− βkek︸ ︷︷ ︸
η
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Measurement error in a regressor

Assume E (ek ) = 0. Otherwise βkE (ek ) is added to the intercept.

Case 1 : cov(Xk , ek ) = 0, no endogeneity in our model.

The OLS estimators are consistent with greater
variance due to the error

Case 2 : cov(Xk , ek ) 6= 0 although cov(X?
k , ek ) = 0

The true variable is uncorrelated with the error,
but the variable we use it is:

cov(Xk ,η) =− βkE (Xkek ) = −βkE (X?
kek )− βkE (e2

k )

= −βkσ
2
ek
6= 0

Therefore, there is endogeneity in our model.
The OLS estimators are biased and inconsistent
Solution: Instrumental Variables
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IV when there are measurement errors

cov(Xi , ε) = 0 for i = 1, . . . , k − 1
cov(ek ,X?

k ) = 0 ⇒ cov(ek ,Xk ) 6= 0.

Therefore we need an IV for Xk .

Find an instrument z and construct:

Z =


1 X1,1 . . . Xk−1,1 z1
1 X1,2 . . . Xk−1,2 z2
...

...
1 X1,n . . . Xk−1,n zn


The consistent IV estimator is:

β̂
IV

= (Z′X)−1Z′y
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Source of Endogeneity: Simultaneous Equations

The dependent and independent variables are entwined

Solution: Instrumental variables
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Simultaneity

homocides =α1 + β1,0 police + β1,1 family rent + ε1

police =α2 + β2,0 homocides + β2,1 other factors + ε2

An increase in the number of homocides will affect the
number of police agents in the streets

Therefore, there is correlation between ε1 and police ⇒
Endogeneity

Solution: Instrumental Variables
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IV with simultaneous equations

We have the structural model of two equations:

y1 =α1y2 + β1w1 + ε1

y2 =α2y1 + β2w2 + ε2

w1,w2 are exogenous

We consider the intercept zero for simplicity

Parameters α1, α2, β1, β2 are called structural parameters

ε1, ε2 are called structural errors
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IV with simultaneous equations

We want to estimate y2. We substitute y1 in the second equation
and regress on y2.

y2 =α2(α1 y2 + β1 w1 + ε1) + β2 w2 + ε2

⇓
(1− α2α1)y2 =α2β1 w1 + β2w2 + α2ε1 + ε2

We have to assume that α1α2 6= 1, so:

y2 = θ21 w1 + θ22 w2 + ν2
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IV with simultaneous equations

y2 = θ21 w1 + θ22 w2 + ν2 reduced eq

where

θ21 = α2β1/(1− α2α1)
θ22 = β2/(1− α2α1)
ν2 = (α2ε1 + ε2)/(1− α2α1)
ν2 is a linear function of ε1 and ε2, then ν2 is uncorrelated
with w1 and w2.

We can estimate θ12 y θ22 by OLS.

If α2 = 0 then there is no simultaneity (test this).

If α2 6= 0, then there is endogeneity and we need IV for y1.
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IV with simultaneous equations

A rank condition is necessary for consistency:

At least one of the exogenous variables of the second equation
is not in the first equation.

At least one of the exogenous variables of the first equation
should have a nonzero coefficient.

Counter example: House expenses and savings
Let us assume that house expenses and savings of a random
family are determined simultaneously by:

expenses =α1 savings + β10 + β11 salary + β12 educ + β13 age + ε1

savings =α2 expenses + β20 + β21 salary + β12 educ + β13 age + ε2
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2 Stages Least Squares

When each endogenous variable has more than one IV

Statistical properties of the 2SLS

Example with simultaneous equations
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Two stage least squares (2SLS)

y = Xβ + ε with Xk endogenous

Assuming that we have valid instruments: z1, z2, . . . , zm for Xk ,
i.e:

cov(zi , ε) = 0 for i = 1, . . . ,m
Each zi is partially correlated with Xk

Out of all linear combinations of zi the 2SLS method used the
most highly correlated with Xk

Xk = δ0 + δ1X1 + . . .+ δk−1Xk−1 + θ1 z1 + . . .+ θm zm + η

As z is uncorrelated with ε then
X̂k = δ̂0 + δ̂1X1 + . . .+ δ̂k−1Xk−1 + θ̂1 z1 + . . .+ θ̂m zm isn’t
either.

So X̂k can be used as an instrument of Xk
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Two steps least squares (2SLS)

We could estimate the parameters of interest with two regressions:

[Stage 1 ] Estimate Xk by OLS:
Xk = δ0 + δ1X1 + . . .+ δk−1Xk−1 + θ1 z1 + . . .+ θm zm +η

X̂k = δ̂0 + δ̂1X1 + . . .+ δ̂k−1Xk−1 + θ̂1 z1 + . . .+ θ̂m zm

[Stage 2 ] Substitute X by X̂ in the original equation:

β̂
2SLS

= (X̂′X)−1X̂′y

The 2SLS estimator is the same than the IV estimator if we have
only one IV.

If there are more than one endogenous variable, we have more
regressions in Stage 1.
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Two steps least squares (2SLS)

We test for validity of instruments and rank condition in the first
stage:

Even if they are not individually significant, they should be
jointly significant.

If η is homokedastic then we test joint significance
H0 : θ = θ1 = . . . = θm = 0 with an F-test

Otherwise, use the Wald test or LM test.

If we cannot reject H0, we should not use the 2SLS.
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2SLS in R

First time, install the package sem.

> install.packages("sem")

Include this library with

> library(sem)

Look at the help of function tsls

> ?tsls
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Statistical properties of 2SLS

Let have the model
y = Xβ + ε

where X = (1,X1, . . . ,Xk )′.

There might be several endogenous variables amongst the
regressors (correlated with ε).

We have one or more IV for each endogenous variable

There exists Z = (1, z1, z2, . . . , zl )′

Any exogenous elements of X are included in Z, plus the
instrumental variables of the endogenous variables.
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Statistical properties of 2SLS

Using this notation, the 2SLS estimator can also be written as:

β̂
2SLS

=(X̂ ′X̂ )−1(X̂ ′Y )

=
[
(X′Z)(Z′Z)−1(Z′X)

]−1 (X′Z)(Z′Z)−1(Z′y)

This notation is handier to proof consistency and asymptotic
normality.
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Consistency of 2SLS

Assumption 2SLS.1: IV is exogenous

E (Z′ε) = 0.

Assumption 2SLS.2: Multicollinearity

rank E (Z′Z) = l : this is automatically satisfy
because all the variables in Z are lineally
independent
rank E (Z′X) = k + 1: It is necessary l ≥ k and
Z and X are appropriately correlated

Assumption 2SLS.3: Homokedasticity, E (ε2|Z ) = σ2

E (ε2Z′Z) = σ2E (Z′Z)
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2SLS with simultaneous equations

To make sure that Assumption 2SLS.2 is satisfied:

At least one of the exogenous variables of the second equation
is not in the first equation.

At least one of the exogenous variables of the first equation
should have a nonzero coefficient.

Counter example: House expenses and savings
Let us assume that house expenses and savings of a random
family are determined simultaneously by:

expenses =α1 savings + β10 + β11 salary + β12 educ + β13 age + ε1

savings =α2 expenses + β20 + β21 salary + β12 educ + β13 age + ε2
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Asymptotic normality of 2SLS

Under Assumptions 2SLS.1–2SLS.2, β̂
2SLS

is consistent.

Theorem

Under Assumptions 2SLS.1–2SLS.3,

√
n(β̂

2SLS − β)→d N
(

0,
σ2

E (X′Z)[E (Z′Z)]−1E (Z′X)

)
as n →∞
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Residuals of 2SLS

The 2SLS residuals are ε̂j = yj −Xj β̂
2SLS

for j = 1, 2, . . . ,n.

If you do the two stages by yourself, you will get

yj − X̂j β̂
2SLS

instead, which are wrong.

We need them to estimate σ2:

σ̂2 =
1

n − k − 1

∑
ε̂2j

The variance–covariance matrix is

V̂2SLS = ÂVar(β̂
2SLS

) = σ̂2(X̂′X̂)−1

where X̂ is estimated in Stage 1.

The standard error is the square root of the diagonal of
V̂2SLS .
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Covariance with heteroskedasticity

If E (ε2|X) 6= σ2, the robust variance–covariance matrix (White) is

V̂2SLS = (X̂′X̂)−1
n∑

j=1

(X̂j ε̂
2
j X̂
′
j )(X̂

′X̂)−1

There is also a expression with Z .
You can use the coeftest R function to account for this in the tests.
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Hypothesis test of 2SLS estimates

Confidence interval and t-statistics on single variables are
obtained as usual, using the standard errors or robust standard
errors as necessary

Multiple restrictions of the form H0 : Rβ = r are tested with
the Wald statistics or LM-test using the White estimator of
V̂2SLS .
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Pitfalls with 2SLS

In practice, the 2SLS estimator is never unbiased.

For example in a simple model with only one explanatory
variable X1 whose instrument is z , the asymptotic bias is:

plim β̂2SLS
1 = β1 +

cov(z, ε)
cov(z,X1)

If cov(z, ε) = 0 ⇒ consistent estimator

Otherwise...
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Pitfalls with 2SLS

... if cov(z, ε) 6= 0 and the instrument is weak then
corr(z,X1) is small which might results in large inconsistency

plim β̂2SLS
1 = β1 +

σεcorr(z, ε)
σX1corr(z,X1)

In the latter case, it is better to use the OLS estimator rather
than the IV estimator because

plim β̂OLS
1 = β1 +

σεcorr(X1, ε)
σX1
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Pitfalls with 2SLS

The standard errors of the 2SLS estimator tend to be large
(imprecise estimator),

This results in statistically insignificant variables.

The size of s.e. depends on the quality of the instrument. See
(AngristKrueger table.pdf).
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Pitfalls with 2SLS

So, the bias in small sample is going to be large if we have a
weak instrument

Therefore, it is important to test the strength of the
instruments in the first state of the 2SLS

H0 : θ1 = . . . = θm = 0

Rule-of-thumb: F-statistics should exceed 10, otherwise a
weak instruments.
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How do we act with endogeneity?

1 Ignore it ⇒ OLS biased and inconsistent parameter estimates
2 Use proxy (only works with omitted variables).

If imperfect ⇒ still biased and inconsistent estimates
But may reduce bias and lower the variance

3 IV

If weak instruments or not exogenous ⇒ biased and imprecise
estimates
Good instruments, 2SLS is still less efficient

4 First difference (panel data) works in some cases to get rid of
the endogenous variable.

5 What to do? Try it all and decide with your personal criteria.
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Hausman test for endogeneity

This is a regression-based test (Hausman, 1978, 1983) which is
asymptotically equivalent to the original Hausman test.

Let us do it with Example 6.1 of Wooldridge:

log(wage) = δ0 + δ1 exper + δ2 exper2 + α1 educ + ε

We believe that educ is endogenous with intruments
motheduc, fatheduc and huseduc.

We have to test for it
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Hausman test for endogeneity

Three steps:
1 OLS of educ over all the intruments (its intruments and the

rest of exogenous variables)

educ =β0 + β1 exper + β2 exper2 + β3 motheduc
+ β4 fatheduc + β5 huseduc + η

and obtain the residuals η̂
2 Include the residuals in the original model and obtain the OLS

estimates

log(wage) = δ0 + δ1 exper + δ2 exper2 + α1 educ + ρ1η̂ + η

3 H0 : Cov(educ, ε) = 0 ⇒ E (η, ε) = 0⇒ ρ1 = 0?
If we fail to reject H0 then educ is exogenous and we should
estimate with OLS
If we reject H0 then educ is endogenous and we should
estimate with 2SLS, if we trust the instruments

Q: What if we have more than one endogenous variable?
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Identification

Let us say that we have k regressors of which p are
endogenous

We say that parameters are exactly identified if the number of
instrumental variables m is greater than the number of
endogenous variables

We say that parameters are overidentified if m > p
We say that parameters are underidentified if m < p. In this
case, we cannot find the estimators and we need to get more
instruments.
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Testing Overidentifying restrictions

An instrument (z) must satified:

1 Relevant: Cov(Xk , z) 6= 0
2 Exogenous: Cov(ε, z) 6= 0

If the model is exactly identified then we cannot test 2).
However, if the model is overidentified then we can test
whether any of the instruments (we do not know which) is
correlated with the error.

The number of overidentification restrictions is m − p
We do not observe ε but we have the residuals ε̂ from the
2SLS.

Sargan test!!!

36 / 41



Measurement Error Simultaneity 2 Stages Least Squares

Sargan test

H0: All instruments are exogenous

1 Obtain residuals ε̂ from the 2SLS estimation using all
instrumental variables.

2 Run an OLS of ε̂ on 1, all exogenous variables and
instruments of the endogenous and obtain LM = nR2

ε̂ .

3 LM ∼ χ2
m−p , find the p-value and conclude whether H0 is

rejected.

If H0 is rejected, then we have to choose other instruments.

If H0 is not rejected, then we can have some confidence in our
instruments.

There is a lot of research into weak instruments nowadays.
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Control function approach to endogeneity

This methodology is very flexible and can be used in linear
models, in fact, it is equivalent to 2SLS in linear models

It also can be used in non-linear models like Probit, logit,
Poisson, etc. when endogeneity is present in the underlying
linear model.
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Control function approach to endogeneity

Assume that we have the following model:

y1 = Xβ + α1y2 + ε

y1 is the dependent variable

X are the exogenous variables including 1

y2 is the endogenous variable

ε is the error term

Z = (1,X,Z2)′ contains X and other exogeneous variables
Z2 which are the instruments of y2.

Z2 must include at least one variable

We could run 2SLS to obtain the estimates of β and α1.

We also can...
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Control function approach to endogeneity

y2 = Zπ2 + ν2 E (Z′ν2) = 0

Endogeneity arises if ν2 and ε are correlated, i.e. if ε = ρ1ν2 + e1

Substituing in the equation of y1:

y1 = Xβ + α1y2 + ρ1ν2 + e1

Now, X,y2,ν2 are uncorrelated with e1 and can run and OLS
Q: Any problem?
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Control function approach to endogeneity

The problem is that ν2 is unknown but it can be estimated by the
residuals of the regression of y2.

The algorithm:

1 OLS on y2 = Zπ2 + ν2 and obtain residuals ν̂2

2 OLS on y1 = Xβ + α1y2 + ρ1ν̂2 + e1

The inclusion of the residuals control for the endogeneity of
y2.

H0 : ρ1 = 0 is a t-test of exogeneity of y2 (use robust
standard errors in case of heterogeneity).

This methodology is better than the 2SLS methodology for
nonlinear models.
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