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Reporting results

Percent of correctly predicted probabilities
Pseudo- R2

Wald, LM, LR tests

Model misspecifications

Omitted variables
Misspecified distribution function
Heteroskedasticity
Endogeneity
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Goodness of fit

Inference: Wald test, LR test, LM test

Goodness of fit

Percent of observations ”correctly” predicted (problem with
the decision rule)
The ML estimates are not chosen as the ones that fit the
sample best
A method less fitted might describe (partial effects) the
problem better
Pseudo R2:

R2 = 1− `ur

`0
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Computer work at home

File: Marginal effects.R

Find APE of variable nwifeinc

Find the effect in an average person of going from kidlt6 = 0
to kidlt6 = 1
How about from kidlt6 = 1 to kidlt6 = 2?

How would you do if for kidlt6 = 0 to kidlt6 = 2?
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Marginal effects exercise

The APE of nwifeinc with the probit model: -0.003616175

The APE of nwifeinc with the logit model: -0.003811813

The effect of nwifeinc with the LPM: -0.003405169

The marginal effect of the average person with the probit model: -0.00418526

The marginal effect of the average person with the logit model: -0.004457575

The effect of one 1 extra kid over the probability of a woman working is:

kidsl6 LPM Probit Logit

------------------------------------------------------------

0-1 -0.262 -0.335 -0.344

1-2 -0.262 -0.252 -0.242
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Computer work at home

File: goodnessoffit.R

Find the pseudo-R2 value

How many y = 1 are well predicted by the model?

and y = 0?

The pseudo-R2 is : 0.2196814
The percentage of 1s predicted right 0.8130841
The percentage of 0s predicted right 0.6307692
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Computer work at home

File: LM goodnessoffit.R

Using LM, test the restriction H0 : βkidslt6 = βkidsge6 = 0
Get standarised residuals of the restricted model
Regress the standarised residuals on standarised X
Test nR2 ∼ χ2

2?

The R2 is 0.1005117 so the LM statistics is: 75.68535

The number of restrictions is 2, the p-value 3.673971e-17

What is the conclusion of the test?
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Model Misspecification

Reminder of identification problem

Endogeneity

Neglected heterogeneity
Continuous variables

Misspecified distribution of the latent model error term

Heteroskedasticity in the latent error term

8 / 38



MLE Results Misspecification of MLE

Parameter Identification Problem
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Latent variable model

y = G(Xβ) + ε

where:

E(ε) = 0
X is exogenous, independent of ε

The c.d.f G is from an exponential family and symmetric
around zero ⇒ G(Xβ) = 1−G(−Xβ).

Then:

P (y = 1 |X) =P (y∗ > 0 |X) = P (Xβ + ε > 0 |X)
=P (ε > −Xβ |X ) = P (ε < Xβ |X)
=G (Xβ)
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Latent variable model

If ε follows either a standard logistic distribution or a standard
normal distributions, then the logit and probit estimates of β
are consistent.

However, if the variance of ε is not 1, then we are estimating
β/σ instead.
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Latent variable model

Subcase 1: If ε ∼ N
(
0, σ2

)
where σ 6= 1 ⇒ ε/σ is standard

normal, and:

P (y = 1 |X) = P (ε < Xβ |X)

= P

(
ε

σ
< X

β

σ
|X
)

= Φ
(
X

β

σ

)
= Φ

(
Xβ̃
)

Again, we have the probit, but this time with parameter β̃ = β/σ.
Hence, in this case, only β/σ is identified – not β
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Latent variable model

Subcase 2: If ε ∼ Λ (µ = 0, s = 1) where V ar(ε) = π2s2

3 :

P (y = 1 | X ) = P (ε < Xβ |X)

= P

(√
3ε

πs
< X

√
3β
πs
|X

)
= Λ

(
Xβ̃; 0, 1

)

Again, we have the logit, but this time with parameter
β̃ =
√

3β/(πs).
Hence, in this case, only β̃ is identified – not β
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Latent variable model

Parameters β are not identified so their estimation is
inconsistent.

However, we are not so much interested in β as in the partial
effects of certain variable.

The APE is consistently estimated.
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Endogeneity
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Omitted variables

Latent model:

y∗ = Xβ + γc+ ε ε|X, c ∼ N(0, 1)

where c is an unobserved variable with mean zero and variance τ2.

The probit model: P (y = 1|X, c) = Φ(Xβ + γc)

Case 1: c and X are independent ⇒ neglected heterogeneity

Case 2: c and X are dependent ⇒ endogeneity
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Case 2: c,X dependent

If c is correlated with X or dependent in any other way:
omission of c is a serious problem (⇒ Endogeneity).

We can estimate the LPM by 2SLS finding instruments of c.

We can use the 2-step approach by Rivers and Vuong’s, also
known as control function approach.
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Simultaneous variables

We have a simultaneous model (Tobit model):

y∗1 =δ1 z1 + α1 y2 + ε1 unobserved

y2 =δ21 z1 + δ22 z2 + ε2 = δ2 z + ε2

y1 =1[y∗1 > 0]

(ε1, ε2) is a bivariate normal, with mean zero and independent
of z

If ε2 is correlated with ε1 ⇒ y2 endogeneous (Problem!!!)

If ε2 is independent of ε1 ⇒ y2 exogenous (No problem)

Assume y2|z is normally distributed

y2 is a continuous r.v
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Tobit model

Let us first set the model.

V ar(ε1) = 1 and V ar(ε2) = τ2
2

We write ε1 = θε2 + η1 ⇒ Cov(ε1, ε2) = θτ2
2 ρ1 = θτ2

η1 is independent of z and ε2 and it is normal

E(η1) = 0,
V ar(η1) = V ar(ε1) + θ2V ar(ε2)− 2θCov(ε1, ε2) = 1− ρ2

1

η1 ∼ N(0, 1− ρ2
1)

y∗1 = δ1z1 + α1y2 + θε2 + η1 (unobserved)

So, y1 = 1[y∗1 > 0]
Calculate P (y1 = 1|z, y2, ε2) (3 minutes)
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Tobit model

P (y = 1|z, y2, ε2) = Φ

(
δ1z1 + α1y2 + θε2√

1− ρ2
1

)

δ1, α1, θ are not identify. Our estimates:

δ̃1 = δ1/
√

1− ρ2
1

α̃1 = α/
√

1− ρ2
1

θ̃ = θ/
√

1− ρ2
1

As 0 < 1− ρ2
1 < 1⇒ 1/

√
1− ρ2

1 > 1 so δ̃1 > δ1

We haven’t got an estimate of δ2 in this step. So we must
estimate it with OLS.

y2 = δ2z + ε2
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Tobit model

Probit estimates of a simultaneous system with endogeneity
are not identified.

We have to first test for endogeneity

If endogeneity exists, then we use Rivers and Vuong 2 steps
estimator
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Test of Endogeneity: Rivers and Vuong

y∗1 =δ1 z1 + α1 y2 + ε1 unobserved

y2 =δ21 z1 + δ22 z2 + ε2 = δ2 z + ε2

y1 =1[y∗1 > 0]

H0 : y2 exogenous

Step 1 : Estimate δ2 on z with OLS and obtain ε̂2

Step 2 : Run de probit y1 = δ1z1 + α1 y2 + θε̂2 + η1

The t-test on θ̂ is equivalent to H0 : θ = 0.

This test is valid even for heteroskedastic ε2 and binary y2

Look at Example 15.3 page 587 Wooldridge.
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Estimates of Rivers and Vuong

If H0 : y2 exogenous is rejected, i.e θ = 0, the two step procedure
provides consistent estimates of δ1 and α1

From the first step we have consistent estimators of δ2, τ
2
2

From the second step we have consistent estimators of δ̃1, α̃1

and θ̃

It can be shown:

δ̂1 =
δ̃1√

(1 + θ̃2τ̂2
2 )

α̂1 =
α̃1√

(1 + θ̃2τ̂2
2 )
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Estimates with endogeneity

The endogenous variable is binary:

y1 =1[δ1 z1 + α1 y2 + ε1 > 0]
y2 =1[δ2 z + ε2 > 0]

(ε1, ε2) is a bivariate normal, with mean zero and independent
of z

If ε2 is correlated with ε1 ⇒ inconsistent estimator δ1, α1

If ε2 is independent of ε1 ⇒ y2 exogenous (No problem)

Assume y2|z is a binary random variable
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Estimates with endogeneity

We need the joint distribution of (y1, y2) given z to obtain the
log-likelihood function and find the parameters that maximise
it.

The Rivers and Vuong procedure can be used to test for
endogeneity but not to estimate the parameters

See Wooldridge Chapter 15.7.3 or Rivers and Vuong (1988)
for details
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Computer work

File: Vuong.R

Test for exogeneity of educ. Example 15.3 of Wooldridge.

y∗1 =β0 + β1 nwifeinc+ β2 educ+ β3 exper + β4 expersq

+ β5 age+ βt kidslt6 + ε1

educ =δ0 + δ1 nwifeinc+ δ2 exper + δ3 expersq

+ δ4 age+ δ5 kidslt6 + δ6 kidsge6 + δ7 motheduc+ δ8 fatheduc

+ δ9houseduc+ ε2
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Misspecified distribution
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Misspecified error distribution

Probit:

We assume that ε ∼ N(0, 1)
Instead ε ∼ N(0, σ2) then we cannot estimate β consistently
but we can estimate the APE consistently

What if ε does not follow a normal distribution? Then:

P (y = 1|X) = P (y∗ > 0|X) = P (ε < Xβ|X) = F (Xβ) 6= Φ(Xβ)

Then the log-lik function of the probit is wrong because we
are using Φ instead of F

The estimates are inconsistent
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Misspecified error distribution

Logit:

We assume that ε ∼ Λ(0, 1)
Instead ε ∼ Λ(0, s) then we cannot estimate β consistently
but we can estimate the APE consistently

What if ε does not follow a logistic distribution? Then:

P (y = 1|X) = P (y∗ > 0|X) = P (ε < Xβ|X) = F (Xβ) 6= Λ(Xβ)

Then the log-lik function of the logit is wrong because we are
using Λ instead of F

The estimates are inconsistent
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Misspecified error distribution

Even if the estimates are inconsistent, the estimates of the
partial effects might be very good.

For example: ε ∼ N(0, 1) but we use the log-lik function of a
logit model.

The estimates β̂
logit ≈ 1.6β̂

probit

However the partial effects of both models are comparable.
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Heteroskedasticity

We have assume that εj are identically distributed (G)

Assume that εj/σj are identically distributed (G)

For σj = exp(Zjγ) and Z some observed variables

P (y = 1|X) = G

(
Xβ

exp(Zγ)

)
Null hypothesis of homoskedasticity H0 : γ = 0 (restricted
model)

The unrestricted model is P (y = 1|X) = G
(

Xβ
exp(Zγ)

)
The restricted P (y = 1|X) = G(Xβ)
We can use LR test, the Wald test or the LM test.
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LM: test for heteroskedasticity

Step 1 : Estimate restricted model, i.e the homoskedastic
model by ML (probit or logit) and obtain the
standarised residuals r̃ and β̃

Step 2 : Regress r̃j on

G′(xjβ̃)√
Ĝ(1− G̃)

xj and
G′(xjβ̃)Xβ̃√
G̃(1− G̃)

Zj

and obtain the R2

Step 3 : LM = nR2 ∼ χ2
q where q is the number of

parameters in γ.
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Compute work

File: LM heteroskedasticity.R

The εj of the latent model might be heteroskedastic,
εj ∼ N(0, σ2

j ) where σ2
j = exp(γxj). Basically Z = X. Test for

heteroskedasticity in:

y∗ =β0 + β1 nwifeinc+ β2 educ+ β3 exper + β4 expersq

+ β5 age+ β6 kidslt6 + β7 kidsge6 + ε
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Summary

Misspecification issues

Omitted variables which are independent of X
Omitted variables which are dependent of X
Misspecified error distribution
Heteroskedasticity of the error

The last three all change the functional form ⇒ inconsistent β̂
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Testing against more general models (LM)

Assume that the latent model has an error such that
ε ∼ N(0, exp(2x1δ))
Where x1 is a part of X.

Basically there is heteroskedasticity in the latent model

P (y = 1|X) = Φ(exp(x1δ)Xβ)
The partial effects of xj depends on β and δ and are difficult
to interpret

If δ = 0 then we have the probit model

We want to test H0 : δ = 0
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Testing against more general models (LM)

LM is convenient to test the null hypothesis presented above

We need to estimate only the restricted model, i.e. with δ = 0
We can consider a more general test H0 : δ = δ0 = 0
Under the null hypothesis G(Xβ) = m(Xβ, X, δ0)
In the example, G(Xβ) = Φ(exp(x1δ0)Xβ) = Φ(Xβ)
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Testing against more general models (LM)

Estimate the model without heteroskedasticity and get the
residuals η̃j = yj −G(xj β̃)
Construct the standarised residual

r̃j =
η̃j√

G̃j(1− G̃j)
where G̃j = G(xj β̃)

Until now, it is all the same than for the LM test
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Testing against more general models (LM)

Find gradients (first partial derivatives) of m() wrt β and δ

Evaluate these at restricted estimates

∇βm̃j = G′(xj β̃)xj
∇δm̃j = ∇δm(xj β̃,xj , δ0)

Regress standarised residuals on:

G′(xj β̃)xj√
G̃j(1− G̃j)

and
∇δm̃j√

G̃j(1− G̃j)

LM = n ∗R2 ∼ χ2
q
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Testing against more general models (LM)

In the example,

∇βm̃j = φ(xj β̃)xj
∇δm̃j = φ(exp(x1δ)xj β̃)xjβx1 exp(x1δ)

Under the null hypothesis

∇δm̃j = φ(xj β̃)xj β̃x1
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